Math, asked by kabircps, 1 month ago

please answer all of them as fast as you can please

Attachments:

Answers

Answered by rakeshkrlaeo2572
0

Answer:

This is the answer if I t may think

Attachments:
Answered by SeCrEtID2006
84

{\huge{\mathfrak{\red{\fcolorbox{red}{pink}{\underline{solution:}}}}}}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Solution 1 :-

➔(1- cos²A) cosec²A=1

➔as we know (1-cos²A)=sin²A

➔sin²A cosec²A

➔cosecA=  \frac{1}{sinA}

➔so, sin²A ×  \frac{1}{sin²A}  = 1

Hence ,proved RHS =LHS

 \\ \\ \\

solution 2 :-

➔(1+cot²A)sin²A=1

➔as,we know (1+cot²A)=cosec²A

➔ cosec²A ×sin²A =1

Hence,RHS=LHS

 \\ \\ \\

solution 3 :-

➔tan²A cos²A=(1-cos²A)

➔as we know tan A = \frac{sin A}{Cos A}

 \frac{sin ²A}{Cos ²A}  ×cos²A

➔ sin²A

➔as we know sin²A=(1-cos²A)

➔1-cos²A

➔Hence ,RHS=LHS

 \\ \\ \\

Solution 4:-

➔cosec√1-cos²A=1

➔cosec√sin²A

➔ cosecA ×SinA

 \frac{1}{sin A}  ×sinA

➔1

Hence RHS=LHS

 \\ \\ \\

solution 5:-

➔(sec²-1)(cosec²-1)=1

➔(  \frac{1}{Cos ²A}  -1) (  \frac{1}{sin² A}

 \frac{1-cos²A}{Cos 2A}  × \frac{1-sin ²A}{sin² A}

 \frac{sin² A}{Cos² A}  × \frac{cos² A}{sin² A}

➔1

➔Hence, RHS =LHS

 \\ \\ \\

solution 6 ,7,8,9,10, in

attachment

Attachments:
Similar questions