Math, asked by Bhavyasri369, 1 year ago

please answer all these quetions in a need

Attachments:

Answers

Answered by rohitkumargupta
13
\bold{\boxed{10.}}

a = (2 + √3)

a² = (4 + 3 + 4√3)

a² = (7 + 4√3)---------------( 1 )

1/a² = 1/(7 + 4√3) * (7 - 4√3)/(7 - 4√3)

1/a² = (7 - 4√3)/(49 - 48)

1/a² = (7 - 4√3)-------------( 2 )

adding---------( 1 ) & --------( 2 )

a² + 1/a² = (7 + 4√3) + (7 - 4√3)

(a² + 1/a²) = 7 + 7 + 4√3 - 4√3

(a² + 1/a²) = 14

\bold{\boxed{11.}} \bold{\frac{\sqrt{2} + 2\sqrt{3}}{2\sqrt{2} + \sqrt{3}}} = a + b√6

solving L.H.S

\bold{\frac{\sqrt{2} + 2\sqrt{3}}{2\sqrt{2} + \sqrt{3}}} * \bold{\frac{2\sqrt{2} - \sqrt{3}}{2\sqrt{2} - \sqrt{3}}}

\bold{\frac{4 - \sqrt{6} + 4\sqrt{6} - 6}{8 - 3}}\bold{\frac{3\sqrt{6} - 2}{5}}

Comparing with R.H.S

a = (-2/5) , b = 3/5

\bold{\boxed{12.}} \bold{\frac{3\sqrt{2} + 2\sqrt{3}}{5\sqrt{2} - 4\sqrt{3}}} = a - b√6

Solving L.H.S

\bold{\frac{3\sqrt{2} + 2\sqrt{3}}{5\sqrt{2} - 4\sqrt{3}}} * \bold{\frac{5\sqrt{2} + 4\sqrt{3}}{5\sqrt{2} + 4\sqrt{3}}}

\bold{\frac{30 + 12\sqrt{6} + 10\sqrt{6} + 24}{50 - 48}}

\bold{\frac{54 + 22\sqrt{6}}{2}}

ON comparing with R.H.S,

a = 54/2 , -b = -22/2a = 27 , -b = -11

\bold{\boxed{13.}}

( a ) (64/25)^(-3/2)

(25/64)^(3/2) = [ (5/8)² ]^(3/2)

(5/8)\bold{^{2*3/2}} = (5/8)³

(125/512)

( b ) (0.00032)\bold{^{-2/5}}

(32/100000)\bold{^{-2/5}}

\bold{[(10)^5/(2)^5]^{2/5}}

\bold{(10/2)^2}

\bold{100/4}

( C ) \bold{(81/16)^{-3/4} * (25/9)^{-3/2} * (2/5)^{-3}}

\bold{[(2/3)^4]^{3/4} * [(3/5)^2]^{3/2} * (5/2)^3}

\bold{(8/27) * (27/125) * (125/8)}

\bold{1}

fanbruhh: nice
james895: hi
Answered by fanbruhh
18

 \bf{hey}
 \bf \underline{here \: is \: the \: answer}
⬇⤵⬇⤵⬇⤵❕

this refers to the pic.

 \underline{hope \: it \: helps}
 \boxed{thanks}
Attachments:

Swarup1998: Excellent! All helps are provided. :clap:
fanbruhh: thanks
fanbruhh: my pleasure bhavyasri
Nafisa025: 55
Similar questions