Math, asked by vishnurajc2002, 10 months ago

Please Answer Anyone​

Attachments:

Answers

Answered by BrainlyPopularman
1

{ \bold{ \underline{Given} :  - }} \\  \\  =  > x = t +  \frac{1}{t}  \:  \: and \:  \: y = t -  \frac{1}{t}  \\  \\ { \bold{ \underline{To  \:  \: find} :  - }} \\  \\  \frac{ {d}^{2} y}{dx ^{2} }  \\  \\ { \bold{ \underline{solution} : -  }} \\   \\  \:  \:  \:  \:  \: . \:  \: Differentiate  \:  \: 'y' \:  \:  with \:  \:  respect \:  \:  to \:  \:  't'  -  \\  \\  =  >  \frac{dy}{dt}  = 1 +  \frac{1}{ {t}^{2} }   \:  \:  \:  \:  \:  \:  -  -  -  -  -  - (1)\\  \\ \:  \:  \:  \:  \:  . \:  \: Differentiate \:  \:  'x'  \:  \: with  \:  \: respect  \:  \: to \:  \:  't'  -  \\  \\  =  >  \frac{dx}{dt}  = 1 -  \frac{1}{ {t}^{2} }  \:  \:  \:  \:  \:  \:  -  -  -  -  -  - (2) \\  \\  \:  \:  \:  \:  \: . \:  \: Now  \:  \: divide  \:  \: both \:  \: equation \:  \: (1) \: and \: (2) -  \\  \\  =  >  \frac{dy}{dx}  =  \frac{1 +  \frac{1}{ {t}^{2} } }{1 -  \frac{1}{ {t}^{2} } }  \\  \\  =  >  \frac{dy}{dx}  =  \frac{ {t}^{2}  + 1}{ {t}^{2} - 1 }  \\  \\   \:  \:  \:  \:   \: \: . \:  \: Now \:  \: Differentiate \:  \:   \:  \: with  \:  \: respect  \:  \: to \:  \:  'x'   -  \\  \\  =  >  \frac{ {d}^{2}y }{ {dx}^{2} }  =  \frac{( {t}^{2} - 1)(2t) - ( {t}^{2}   + 1)(2t)}{ {( {t}^{2}  - 1)}^{2} }  \times  \frac{dt}{dx}  \\  \\  =  >  \frac{ {d}^{2} y}{ {dx}^{2} }  =  \frac{2t( - 2)}{ { {(t}^{2}  - 1)}^{2} }  \times  \frac{dt}{dx}  \\  \\  \:  \:  \:   \:  \:  \: \: . \:  \:  by \:  \: equation \: (2) -  \\  \\  =  >  \:  \frac{dt}{dx}  =  \frac{ {t}^{2} }{ {t}^{2} - 1 }  \\  \\   \:  \:  \:  \: . \:  \: so \:  \: that \:  -  \\  \\  =  >  \frac{ {d}^{2}y }{ {dx}^{2} }  =  \frac{ - 4t}{ {( {t}^{2} - 1) }^{2} }  \times  \frac{ {t}^{2} }{( {t}^{2} - 1) }  \\  \\  =  >  \frac{ {d}^{2}y }{ {dx}^{2} }  =  - 4 {t}^{3}  {( {t}^{2} -1 ) }^{ - 3}  \\  \\ { \bold{ \underline{ Hence \:  \:  ,  \:  \: option \:  \:  (b)  \:  \: is  \:  \: correct.}}}

Similar questions