Please answer as fast as possible
Attachments:
Answers
Answered by
4
Answer:
Please mark BRAINLIEST....
Attachments:
Answered by
6
Answer:
1/α + 1/β + 1/γ = 5
Step-by-step explanation:
Given,
- p(x) = 6x³ + 3x² - 5x + 1
To Find,
- The Value of 1/α + 1/β + 1/γ.
Solution,
p(x) = 6x³ + 3x² - 5x + 1
In cubic equation,
p(x) = ax³ + bx² + cx + d
p(x) = p(x)
ax³ + bx² + cx + d = 6x³ + 3x² - 5x + 1
ax³ + bx² + cx + d = (6)(x³) + (3)(x²) + (-5)(x) + (1)
a = 6
b = 3
c = -5
d = 1
αβ + βγ + γα = c/a
→ αβ + βγ + γα = -5/6 •••(1)
αβγ = -d/a
→ αβγ = -1/6 •••(2)
1/α + 1/β + 1/γ = 1/α + 1/β + 1/γ
→ 1/α + 1/β + 1/γ = (1 × αβ + 1 × βγ + 1 × γα) / (αβγ)
→ 1/α + 1/β + 1/γ = (αβ + βγ + γα) / αβγ
→ 1/α + 1/β + 1/γ = -5/6 / -1/6 •••[By (1)&(2)]
→ 1/α + 1/β + 1/γ = -5/6 × 6/-1
→ 1/α + 1/β + 1/γ = 5
Required Answer,
- 1/α + 1/β + 1/γ = 5
Similar questions