Math, asked by khushijaswal95, 2 months ago

Please answer as fast as possible​

Attachments:

Answers

Answered by nandika32
4

Answer:

Please mark BRAINLIEST....

Attachments:
Answered by Anonymous
6

Answer:

1/α + 1/β + 1/γ = 5

Step-by-step explanation:

Given,

  • p(x) = 6x³ + 3x² - 5x + 1

To Find,

  • The Value of 1/α + 1/β + 1/γ.

Solution,

p(x) = 6x³ + 3x² - 5x + 1

In cubic equation,

p(x) = ax³ + bx² + cx + d

p(x) = p(x)

ax³ + bx² + cx + d = 6x³ + 3x² - 5x + 1

ax³ + bx² + cx + d = (6)(x³) + (3)(x²) + (-5)(x) + (1)

a = 6

b = 3

c = -5

d = 1

αβ + βγ + γα = c/a

αβ + βγ + γα = -5/6 •••(1)

αβγ = -d/a

αβγ = -1/6 •••(2)

1/α + 1/β + 1/γ = 1/α + 1/β + 1/γ

→ 1/α + 1/β + 1/γ = (1 × αβ + 1 × βγ + 1 × γα) / (αβγ)

→ 1/α + 1/β + 1/γ = (αβ + βγ + γα) / αβγ

→ 1/α + 1/β + 1/γ = -5/6 / -1/6 •••[By (1)&(2)]

→ 1/α + 1/β + 1/γ = -5/6 × 6/-1

1/α + 1/β + 1/γ = 5

Required Answer,

  • 1/α + 1/β + 1/γ = 5
Similar questions