Physics, asked by Anonymous, 6 hours ago

Please answer ASAP with explanation.

Attachments:

Answers

Answered by tejeswarteju
12

\huge\underline\mathfrak\pink{solution}

 \frac{d}{dx} ( \frac{1}{x {}^{n} } )

 \frac{d}{dx} (x {}^{ - n} )

  - n \times x {}^{ - n - 1}

 -  n \times  {x}^{ - (n + 1)}

 - n \times  \frac{1}{ {x}^{n + 1} }

 \frac{ - n}{ {x}^{n + 1} }

hope it helps you dear.

I want to know about you.

next time.

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
9

Answer

  • \sf Option \ B = \dfrac{-n}{x^{n + 1}}

━━━━━━━━━━━━━━━━━━━━━━

\displaystyle\underline{\bigstar\:\textsf{According to the Question :}}

\sf :\implies \dfrac{d}{dx}\bigg(\dfrac{1}{x^n}\bigg)

\sf :\implies \dfrac{d}{dx}\bigg( x^{-n}\bigg)

  • \sf\dfrac{d}{dx} x^n = nx^{n-1}

\sf :\implies -n \times x^{-n-1}

\sf :\implies -n \times x^{-(n+1}

\sf :\implies -n \times \dfrac{1}{x^{n+1}}

\sf :\implies\dfrac{-n}{x^{n+1}}

Similar questions