Physics, asked by Anonymous, 1 month ago

Please answer ASAP with explanation.

Vectors  \vec{A} and  \vec{B} each have magnitude L. When drawn with their tails at the same point, the angle between them is 30°. The value of  \vec{A}  \vec{B} is :

A. Zero
B. L²
C.   \sqrt{3}  {L}^{2} /2
D. 2L²​

Answers

Answered by AestheticSky
37

 \maltese \:  \large \underbrace{ \pmb { \frak \orange{Given  \: that : -  }}}

  • Vectors  \vec{A} and  \vec{B} each have magnitude L. When drawn with their tails at the same point, the angle between them is 30°

 \maltese \:  \large \underbrace{ \pmb { \frak \orange{ Asked \:  to \:  calculate : -  }}}

  • The value of  \vec{A}  \vec{B} is ?

 \maltese \:  \large \underbrace{ \pmb { \frak \orange{ Concept  \: to \:  be \:  applied : -  }}}

  • When two vectors (A and B) have a particular angle (\theta) between them, then their Dot product is as follows :-

\leadsto \underline{\boxed{\sf{ \pink{{ \overrightarrow{A}. \overrightarrow{B} = AB \cos \theta}}}}} \bigstar

  • Here, We are already provided with the magnitudes of both the vectors which is same and is equal to (L)

  • \sf\theta is also given as 30⁰

  \\  \dag\underline{ \frak{substituting \: the \: given \: values \: in \: the \: formula : -  }} \\

 \\  :  \implies \sf  \overrightarrow{A}  .\overrightarrow{B} = (L)(L) \cos {30}^{0}  \\

 \\  :  \implies \sf  \overrightarrow{A}  .\overrightarrow{B} =  {L}^{2}   \times  \frac{ \sqrt{3} }{2}  \\

 \\  :  \implies  \boxed{\sf  \pink{ \overrightarrow{A}  .\overrightarrow{B} =  \frac{ \sqrt{3} .{L}^{2}  }{2}  } }\bigstar\\

  \therefore\underline {\sf  (c) \: option \: is \: correct \: }

______________________

hope it helps !

Answered by RISH4BH
168

\rule{200}5

Need to FinD :-

  • The dot product of the vectors .

\red{\frak{Given}}\begin{cases} \sf \vec{A} \ and \ \vec{B} \ each \ have \ magnitude\ L .\\\\\sf The \ angle \ between\ them \ is \ 30^o .\end{cases}

We know that the dot product of two vectors say A and B is given by ,

\sf\longrightarrow \purple{\small \vec{A} .\vec{B}= |A| |B| \ cos\theta}

  • where θ is the angle between the two vectors .
  • |A| and |B| are the magnitude of A and B respectively .

Here ,

  • |A| = L
  • |B| = L
  • θ = 30°

Substituting the respective values ,

\sf\longrightarrow \footnotesize \vec{A} .\vec{B}= |A| |B| \ cos\theta \\\\\\\sf\longrightarrow  \footnotesize \vec{A} .\vec{B}=  L \times L \times cos 30^o  \\\\\\\sf\longrightarrow  \footnotesize \vec{A} .\vec{B}= L^2\times \dfrac{\sqrt3}{2}\qquad\Bigg\lgroup \bf cos30^o =\dfrac{\sqrt3}{2}\Bigg\rgroup  \\\\\\\sf\longrightarrow  \footnotesize \underline{\underline{\red{ \vec{A} .\vec{B}= \dfrac{ \sqrt3 L^2}{2} }}}

\rule{200}5


Anonymous: Great!
Similar questions