Math, asked by Anarthian, 6 months ago

please answer atleast 5 question I'll make you branliest and I'll follow you​

Attachments:

Answers

Answered by Anonymous
2

Answer:

16.) Ratio of radii of two spheres is 4: 7

radius \:  \: of \:  \: 1st \:  \: sphere(r1) = 3x \\ radius \:  \: of \:  \: 2nd \:  \: sphere(r2) = 7x \\ ratio \:  \: of \:  \: volumes \:  \: are \:  \\  = \frac{v1}{v2}  \\  =  \frac{ \frac{4}{3}\pi {r1}^{3}  }{ \frac{4}{3}\pi {r2}^{3}  }  \\  =  \frac{r {1}^{3} }{r {2}^{3} }  \\  =  \frac{(3x {)}^{3} }{(7x {)}^{3} } \\  =  \frac{27 {x}^{3} }{343 {x}^{3} }  \\  =  \frac{27}{343}

ratio of volumes is 27 : 343.

18.)

circumference \: \: of \:  \: base  = 120\pi \\ slant \:  \: height = 10cm \\ circumference \:  \: of \:  \: base \:  = 2\pi \: r \\ 120\pi = 2\pi \: r \\ 120 = 2r \:  \\  \frac{120}{2}  = r \:  \\  r \:  = 60cm \\ csa  \: \: of \: \:  cone = \pi \: r \: l \\  =  \frac{22}{7} \times 60 \times 10 \\  =  \frac{13200}{7}   \\  = 1885.7c {m}^{2}

27.) \frac{ {x}^{2} - 16 }{x + 4}  \div  \frac{x - 4}{x + 4}  \\  =  \frac{ {x}^{2}  - 16}{x + 4}  \times  \frac{x + 4}{x - 4}  \\  =  \frac{ {x}^{2} - 16 }{x - 4}  \\  =   \frac{ {x}^{2}  -  {4}^{2} }{x - 4}  \\  \:  \:  \:  \:  \:  \:  \:  \: using \:  \: this \:  \: identity \\  {x}^{2}  -  {y}^{2}  = (x + y)(x - y) \\  =  \frac{(x - 4)(x + 4)}{(x - 4)}  \\  = (x + 4) \:  \: ans

28.) \frac{p}{q}  = a \\ p = qa \\ put \:  \: the \:  \: value \\  \frac{ {p}^{2} +  {q}^{2}  }{ {p}^{2}  -  {q}^{2} }  \\  =  \frac{(qa {)}^{2}  +  {q}^{2} }{(qa {)}^{2} -  {q}^{2}  }  \\  using \:  \: this \:  \: identity \:  \:  \\  {x}^{2}  -  {y}^{2}  = (x + y)(x - y) \\  =  \frac{(qa + q {)}^{2} }{(qa - q)(qa - q)}  \\  =  \frac{(qa + q)(qa + q)}{(qa - q)(qa + q)}  \\  =  \frac{(qa + q)}{(qa - q)}  \\  =  \frac{q(a + 1)}{q(a - 1)}  \\  =  \frac{(a + 1)}{(a - 1)} ans

It is very difficult to type all the questions so , I have solved only 4 small questions and next time give more points of this long questions.

and

I hope it will help you

Similar questions