Math, asked by amishafilomeena1003, 3 months ago

please answer both of them ​

Attachments:

Answers

Answered by prince5132
21

SOLUTION 1 :-

  \star \: \sf \:  2.3 \bar{5} + 0. \bar{12}

Firstly let's try to convert them in rational form i.e p/q where p and q are integers and q ≠ 0.

Let,

 \implies \:  \sf \: x = 2.3 \bar{5} \:  and \: y  = 0. \bar{12}

Let's solve both the term seperately,

\implies \:  \sf \: x = 2.3 \bar{5}

Multiple 10 on both sides,

\implies \:  \sf \: 10x = 23. \bar{5} \: ....(1)

Again multiply by 10 on both sides,

\implies \:  \sf \: 100x = 235. \bar{5} \: ....(2)

Now subtract equation 1 from equation 2,

\implies \:  \sf \:100 x - 10x = 235. \bar{5} - 23. \bar{5}

\implies \:  \sf \: 90x = 212

\implies \:  \sf \: x = \dfrac{212}{90}

 \therefore \sf \:  \underline{ \boxed{2.3 \bar{5} =  \frac{212}{90} }} \\

Similarly,

\implies \:  \sf \: y = 0.\bar{12} \:  ....(1)

multiply by 100 on both sides,

\implies \:  \sf \: 100y = 12.\bar{12} \: ....(2)

subtract equation 1 from equation 2,

\implies \:  \sf \:100 y - y =12. \bar{12} -  0.\bar{12}

\implies \:  \sf \: 99y = 12

\implies \:  \sf \: y = \dfrac{12}{99}

\therefore \sf \:  \underline{ \boxed{0. \bar{12} =  \frac{12}{99} }} \\

Now According to the question we have,

\implies \:  \sf \: x + y =  \dfrac{212}{90}  + \dfrac{12}{99}

\implies \:  \sf \: x + y =  \dfrac{2332 +120}{990}

\implies \:  \sf \: x + y =  \dfrac{2452}{990}

\implies \:  \sf \: x + y = 2.4 \bar{76}

SOLUTION :- 2

 \implies \:  \sf \:  \bigg( \sqrt{ \dfrac{3}{5} }  \bigg) ^{x + 1}  =  \dfrac{125}{27}

By using identify √a¹ = a^½.

 \implies \:  \sf \:  \bigg( \dfrac{3}{5}  \bigg) ^{ \dfrac{x + 1}{2} }  =  \dfrac{5 ^{3} }{3 ^{3} }

\implies \:  \sf \:  \bigg( \dfrac{3}{5}  \bigg) ^{ \dfrac{x + 1}{2} }  =   \bigg( \dfrac{5}{3}  \bigg) ^{3}

 \implies \:  \sf \:  \bigg( \dfrac{3}{5}  \bigg) ^{ \dfrac{x + 1}{2} }  =   \bigg( \dfrac{3}{5}  \bigg) ^{ - 3}

  \implies \:  \sf \:   \dfrac{x + 1}{2}  =  - 3

  \implies \:  \sf \:   x + 1  =  - 6

  \implies \:  \sf \:   x =  - 6 - 1

  \implies \:   \underline{ \boxed{\sf \:   x =  - 7}}


Anonymous: Awesome! :3
prince5132: Thanks <3
spacelover123: Great answer! :meow_wow:
prince5132: Thanks ! :meow-heart:
prince5132: _*
Similar questions