Math, asked by afnantanzeem, 1 month ago

please answer both the questions fast please ​

Attachments:

Answers

Answered by gavadesiddhi32
0

Answer:

option B

45 degree

Step-by-step explanation:

I hope it will help you

Answered by AestheticSky
18

 \\    \large\bigstar \underbrace{ \textsf{ \textbf{ solution \: 1 : -  }}}

Observe that 2x and 2y are co-interior angles whose sum is equivalent to 180°

 \\  \quad \mapsto \sf 2x + 2y = 180 ^{0}  \\

 \\  \quad \mapsto \sf x + y =  {90}^{0}   -  -  - (1)\\

In trangle ABC,

 \\  \quad \rightarrow \sf x + y + z =   {180}^{0}  \:  \:  \:  \:  \bigg \{ angle \: sum \: property\bigg \} \\

 \\  \quad \rightarrow \sf  {90}^{0}  + z =  {180}^{0}  \:  \:  \:  \:  . \:  . \: . \: from \: (1) \\

 \\  \quad \rightarrow \sf z =  {90}^{0}  \\

Now, z and 2a are in linear pair. Sum of the angles in a linear pair is equivalent to 180°

 \\  \quad \longrightarrow \sf z + 2a =  {180}^{0} \\

 \\  \quad \longrightarrow \sf  {90}^{0}  + 2a =  {180}^{0}  \\

 \\   \quad\longrightarrow \sf 2a =  {90}^{0}  \\

 \\  \quad \therefore \underline{ \boxed{ \bf a =  {45}^{0} }} \bigstar \\

hence, option (b) is correct

 \\    \large\bigstar \underbrace{ \textsf{ \textbf{ solution \: 2 : -  }}}

 \\   \quad \bullet \quad  \sf x = 2 +  \sqrt{5}  \\

 \\  \quad \mapsto\quad  \sf x -  \frac{1}{x}  \\  \\  \quad \mapsto \quad   \sf\frac{ {x}^{2} - 1 }{x}

Now, substitute the values :-

 \\  \quad \mapsto \quad   \sf\frac{ {(2 +  \sqrt{5} )}^{2} - 1 }{2 +  \sqrt{5} }  \\  \\  \quad \mapsto \quad   \sf\frac{4 + 5 + 4 \sqrt{5}  - 1}{2 +  \sqrt{5} }  \\  \\  \quad \mapsto \quad  \sf  \frac{8 + 4 \sqrt{5} }{2 +  \sqrt{5} }  \\  \\  \quad \mapsto \quad \sf  \frac{4 \cancel{(2 +  \sqrt{5} )}}{ \cancel{2 +  \sqrt{5} }}  \\  \\ \quad \therefore \quad \boxed{ \boxed{ \bf 4} } \bigstar \\

_____________________________

Attachments:
Similar questions