Math, asked by TanishaDasila, 1 year ago

Please answer both the questions Please....

Attachments:

Answers

Answered by ss8153808p6g2ts
1
your question's answer
Attachments:

DaIncredible: bro 4√3 + 4√3 + 1
DaIncredible: 8√3 + 1
ss8153808p6g2ts: yes
ss8153808p6g2ts: mistake ho gya
DaIncredible: :)
Answered by DaIncredible
2
Hey friend,
Here is the answer you were looking for:

Identities used :

(x + y)(x - y) =  {x}^{2}  -  {y}^{2}  \\  \\  {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2}   +  2xy \\  \\  {(x - y)}^{2}  =  {x}^{2}  +  {y}^{2}  - 2xy

(1) \\ a =  \frac{ \sqrt{3} +  \sqrt{1}  }{ \sqrt{3}  -  \sqrt{1} }  \\


On rationalizing the denominator we get :

a =  \frac{ \sqrt{3} +  \sqrt{1}  }{ \sqrt{3}  -  \sqrt{1} }  \times  \frac{ \sqrt{3}   +   \sqrt{1} }{ \sqrt{3}  +  \sqrt{1} }  \\  \\ a =  \frac{ {( \sqrt{3} )}^{2} +  {( \sqrt{1}) }^{2}   + 2( \sqrt{3})( \sqrt{1} ) }{ {( \sqrt{3} })^{2} -  {( \sqrt{1} )}^{2}  }  \\  \\  a =  \frac{3 + 1 + 2 \sqrt{3} }{3 - 2}  \\  \\ a =  \frac{4 + 2 \sqrt{3} }{2}  \\  \\ a = 2 +  \sqrt{3}  \\

b =  \frac{ \sqrt{3} -  \sqrt{1}  }{ \sqrt{3} +  \sqrt{1}  }  \\

On rationalizing the denominator we get :

b =  \frac{ \sqrt{3}  -  \sqrt{1} }{ \sqrt{3}  +  \sqrt{1} }  \times  \frac{ \sqrt{3}  -  \sqrt{1} }{ \sqrt{3} -  \sqrt{1}  }  \\  \\ b =  \frac{ {( \sqrt{3} )}^{2} +  {( \sqrt{1} )}^{2}   - 2( \sqrt{3})( \sqrt{1} ) }{ {( \sqrt{3}) }^{2} -  {( \sqrt{1}) }^{2}  }  \\  \\ b =  \frac{3 + 1 - 2 \sqrt{3} }{3 - 1}  \\  \\ b =  \frac{4 - 2 \sqrt{3} }{2}  \\  \\ b = 2 -  \sqrt{3}

Now, putting the values :

 {a}^{2}  + ab -  {b}^{2}

 {(2 +  \sqrt{3}) }^{2}  + (2 +  \sqrt{3} )(2 -  \sqrt{3} ) -  {(2 -  \sqrt{3}) }^{2}  \\  \\  = ( {(2)}^{2}  +  {( \sqrt{3}) }^{2}  + 2(2)( \sqrt{3} )) +(  {(2)}^{2}  -  {( \sqrt{3}) }^{2} )   -   ( {(2)}^{2}  +  {( \sqrt{3} )}^{2}  - 2(2)( \sqrt{3} ) \\  \\  = (4 + 3 + 4 \sqrt{3} ) + (4 - 3)  -  (4 + 3 - 4 \sqrt{3} ) \\  \\  = (7 + 4 \sqrt{3} ) + (1)  - (7 - 4 \sqrt{3} ) \\  \\  = 7 + 4 \sqrt{3}  + 1 - 7 + 4 \sqrt{3}  \\  \\  = 1 + 8 \sqrt{3}
(2) \\ x =  \frac{ \sqrt{3} -  \sqrt{2}  }{ \sqrt{3} +  \sqrt{2}  }

On rationalizing the denominator we get,

x =  \frac{ \sqrt{3}  -  \sqrt{2} }{ \sqrt{3}  +  \sqrt{2} }  \times  \frac{ \sqrt{3}  -  \sqrt{2} }{ \sqrt{3}  -  \sqrt{2} }  \\  \\ x =  \frac{ {( \sqrt{3} )}^{2} +  {( \sqrt{2}) }^{2}   - 2( \sqrt{3})( \sqrt{2}  )}{ {( \sqrt{3} )}^{2} -  {( \sqrt{2}) }^{2}  }  \\  \\ x =  \frac{3 + 2 - 2 \sqrt{6} }{3 - 2}  \\  \\ x = 5 - 2 \sqrt{6}

y =  \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3} -  \sqrt{2}  }  \\

On rationalizing the denominator we get :

y =  \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  -  \sqrt{2} }  \times  \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}  +  \sqrt{2} }  \\  \\ y =  \frac{ {( \sqrt{3} )}^{2}  +  {( \sqrt{2} )}^{2} + 2( \sqrt{3} )( \sqrt{2} ) }{ {( \sqrt{3}) }^{2}  -  {( \sqrt{2} )}^{2} }  \\  \\ y =  \frac{3 + 2 - 2 \sqrt{6} }{3 - 2}  \\  \\ y = 5 - 2 \sqrt{6}


Now putting the values :

 {x}^{2}  +  {y}^{2}  + xy  \\  \\  =  {(5 + 2 \sqrt{6} )}^{2}  +  {(5 - 2 \sqrt{6}) }^{2}  + (5 + 2 \sqrt{6} )(5 - 2 \sqrt{6} ) \\  \\  = ( {(5)}^{2}  +  {(2 \sqrt{6} )}^{2}  + 2(5)(2 \sqrt{6} )) + ( {(5)}^{2}  +  {(2 \sqrt{6} )}^{2}  - 2(5)(2 \sqrt{6} )) +  ({(5)}^{2}  -  {(2 \sqrt{6}) }^{2} ) \\  \\  = (25 + 24 + 20 \sqrt{6} ) + (25  +  24 - 20 \sqrt{6} ) + (25 - 24) \\  \\  = 49 + 20 \sqrt{6}  + 49 - 20 \sqrt{6}  + (1) \\  \\  = 98 + 1 \\  \\ 99


Hope this helps!!

If you have any doubt regarding to my answer, feel free to ask in the comment section or inbox me if needed.

@Mahak24

Thanks...
☺☺

TanishaDasila: Thanx a lot
TanishaDasila: Thank u
DaIncredible: my pleasure... glad to help ^_^
DaIncredible: Thanks for brainliest
TanishaDasila: Wlcm.
TanishaDasila: It was really helpfull
TanishaDasila: Very helpfull
DaIncredible: glad to knoe that ^_^
DaIncredible: know*
TanishaDasila: Ur helpfullnessss
Similar questions