Math, asked by patilswetal907, 2 months ago

please answer by solving​

Attachments:

Answers

Answered by Anonymous
29

Given :

  • Angle A + Angle B = 65°
  • Angle B + Angle C = 140°

 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄

To Find :

  • Angle B = ?

 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄

Solution :

Remember that :

Sum of 3 angles of a triangle = 180°

Here,

»»»Angle A + Angle B = 65°

»»»Angle B + Angle C = 140°

Than,

{\twoheadrightarrow{\sf{Angle  \: A + Angle  \: B + Angle \:  B + Angle  \: C = 65° + 140°}}}

{\twoheadrightarrow{\sf{Angle  \: A + Angle \:  B + Angle \:  B + Angle  \: C = 205°}}}

{\twoheadrightarrow{\sf{(A + B + C) + B = 205°}}}

{\twoheadrightarrow{\sf{180° + B = 205°}}}

{\twoheadrightarrow{\sf{Angle \:  B = 205° - 180°}}}

{\large{\red{:{\mapsto{\underline{\boxed{\bf{ 25°}}}}}}}}

Hence,

Angle B = 25°

{\red{\underline{\purple{\underline{\green{\boxed{\mathfrak{D (d) \: option \:  is \:  correct.}}}}}}}}

 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄

Answered by brainly10038
1

⇝Given :</p><p></p><p>Angle A + Angle B = 65°</p><p></p><p>Angle B + Angle C = 140°</p><p></p><p> ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄</p><p></p><p>⇝To Find :</p><p></p><p>Angle B = ?</p><p></p><p> ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄</p><p></p><p>⇝Solution :</p><p></p><p>❒Remember that :</p><p></p><p>Sum of 3 angles of a triangle = 180°</p><p></p><p>❒Here,</p><p></p><p>»»»Angle A + Angle B = 65°</p><p>»»»Angle B + Angle C = 140°</p><p></p><p>❒Than,</p><p></p><p>{\twoheadrightarrow{\sf{Angle \: A + Angle \: B + Angle \: B + Angle \: C = 65° + 140°}}}↠AngleA+AngleB+AngleB+AngleC=65°+140°</p><p>{\twoheadrightarrow{\sf{Angle \: A + Angle \: B + Angle \: B + Angle \: C = 205°}}}↠AngleA+AngleB+AngleB+AngleC=205°</p><p>{\twoheadrightarrow{\sf{(A + B + C) + B = 205°}}}↠(A+B+C)+B=205°</p><p>{\twoheadrightarrow{\sf{180° + B = 205°}}}↠180°+B=205°</p><p>{\twoheadrightarrow{\sf{Angle \: B = 205° - 180°}}}↠AngleB=205°−180°</p><p>{\large{\red{:{\mapsto{\underline{\boxed{\bf{ 25°}}}}}}}}:↦25°</p><p></p><p>❒Hence,</p><p></p><p>Angle B = 25°</p><p>{\red{\underline{\purple{\underline{\green{\boxed{\mathfrak{D (d) \: option \: is \: correct.}}}}}}}}D(d)optioniscorrect.</p><p></p><p> ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄</p><p></p><p>

Similar questions