Math, asked by rahi435, 1 year ago

please answer correct or I will report please answer

Attachments:

Answers

Answered by siddhartharao77
1

Step-by-step explanation:

Note: I am replacing θ with A for the better understanding.

Given:\frac{sinA}{1-cosA} + \frac{tanA}{1+cosA}

=\frac{sinA}{1-cosA}*\frac{1+cosA}{1+cosA}+\frac{tanA}{1+cosA}*\frac{1-cosA}{1-cosA}

=\frac{sinA(1+cosA)}{(1-cosA)(1+cosA)}+\frac{tanA(1-cosA)}{(1+cosA)(1-cosA)}

=\frac{sinA(1+cosA)}{1-cos^2A}+ \frac{tanA(1-cosA)}{1-cos^2A}

=\frac{sinA(1+cosA)}{sin^2A}+\frac{tanA(1-cosA)}{sin^2A}

=\frac{sinA(1+cosA)}{sin^2A} + \frac{sinA(1-cosA)}{cosAsin^2A}

=sinA[\frac{1+cosA}{sin^2A}+\frac{1-cosA}{cosAsin^2A}]

=\frac{1+cosA}{sinA}+\frac{1-cosA}{cosAsinA}

=\frac{1}{sinA}+\frac{cosA}{sinA} + \frac{1}{cosAsinA} - \frac{cosA}{sinAcosA}

=cosecA + cotA - secAcosecA - cosecA

=secAcosecA + cotA


Hope it helps!

Answered by Siddharta7
0

The answer is explained below.


Attachments:
Similar questions