Math, asked by beautyqueen74, 3 months ago

please answer correctly .​

Attachments:

Answers

Answered by SachinGupta01
4

To find :

  \sf \: We  \: have \:  to \:  find \:  four  \: rational \:  number \:  between \:  \:  \dfrac{1}{5}  \: and \:  \dfrac{1}{8}

 \bf \: \underline{ So,  \: Let's \:  find \:   it} :

 \sf \: So,  \: first  \: of  \: all  \: We \:  will  \: find \:  the  \: LCM  \: of  \: 5 \: and \: 8.

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{2}}}&{\underline{\sf{\:\:5 \:  -  \: 8\:\:\:}}}\\ {\underline{\sf{2}}}& \underline{\sf{\:\:5 \:  -  \: 4\:\:\:}} \\\underline{\sf{2}}&\underline{\sf{\:\:5 \:  -  \: 2\: \:\:}}\\{ \underline{\sf{5}}}&{\underline{\sf{\:5 \:  - \:  1\:\:\:}}}  \\ {\underline{\sf{}}}&{{\sf{\:\:1\:\:\:}}}   \underline{\sf{}}&{\sf{\:\:\:\:\:}} \end{array}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

 \bf \: LCM \:  =  \: 2 \:  \times  \: 2 \times  \: 2  \: \times \:  5

 \sf \:So, \: The  \: LCM  \: =  \: 40

 \sf \: Now,  \: We \:  will  \: make \:  the  \: denominator \:  same.

 \sf \dfrac{1}{5}  \:  \times  \:  \dfrac{8}{8}  \:  \rightarrow \:  \dfrac{8}{40}

 \sf \dfrac{1}{8}  \:  \times  \:  \dfrac{5}{5}  \:  \rightarrow \:  \dfrac{5}{40}

 \sf \: Now,  \: We  \: have  \: to \:  multiply \:  each  \: of \:  them \:  by  \: \:   \dfrac{10}{10}

 \sf \dfrac{8}{40}  \:  \times  \:  \dfrac{10}{10}  \:  \rightarrow \:  \dfrac{80}{400}

 \sf \dfrac{5}{40}  \:  \times  \:  \dfrac{10}{10}  \:  \rightarrow \:  \dfrac{50}{400}

 \sf \: So,  \: the  \: numbers \:  between  \:  \dfrac{80}{100}  \: and \:  \dfrac{50}{100}  \: are \: the \: answer.

 \sf \red{Answer \: } = \:  \dfrac{ - 72}{100}   \:  ,\:  \dfrac{ - 71}{10} \:  ,\:  \dfrac{ - 70}{100}   \:  ,\:  \dfrac{ - 69}{100}

More to Know :

The numbers which can be expressed in the form of \frac{P}{q}, where P and q both are Integers but q is not equal to 0 are known as Rational numbers.

 \sf Some \:Rational \:numbers  \:are\: \: \dfrac{8}{7} , \dfrac{-8}{14} , \dfrac{-5}{-5}

Every natural number, whole number, integer and fractions are rational but the converse may not possible.

Note - 0 is a rational number which is neither Positive nor nagitive.

Similar questions