Please answer Don't give irrelevant answer
Attachments:
Answers
Answered by
1
Answer:
Step-by-step explanation:
3sinx+5cosx=5
squaring on both sides
(3sinx+5cosx)2=52
9(sinx)2+25(cosx)2+30sinxcosx=25
let this equation be 1
now take the second equation as
5sinx−3cosx=a
squaring on both sides
25(sinx)2+9(cosx)2−30sinxcosx=a2
let this equation be 2
now add equation 1 and equation 2
we get
9(sinx)2+25(cosx)2+30sinxcosx+25(sinx)2+9(cosx)2−30sinxcosx=25+a2
take out 9 and 25 common and +30sinxcosx-30sinxcosx gets cancelled
9((sinx)2+(cosx)2)+25((sinx)2+(cosx)2)=25+a2
we know that (sinx)2+(cosx)2=1
9(1)+25(1)=25+a2
9+25=25+a2
34=25+a2
34−25=a2
a2=9
a=3
therefore 5sinx−3cosx=3
hope it helps you
Similar questions