Math, asked by mamatakhuntia1974, 26 days ago

Please Answer....
DON'T SPAM....​

Attachments:

Answers

Answered by vamshi1100
1

Answer:

correct option is B

Step-by-step explanation:

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:x =  \sqrt{5} + 1

and

\rm :\longmapsto\:y = \dfrac{1}{2 \sqrt{5}  - 3}

Consider,

\rm :\longmapsto\:y = \dfrac{1}{2 \sqrt{5}  - 3}

On rationalizing the denominator, we get

\rm :\longmapsto\:y = \dfrac{1}{2 \sqrt{5}  - 3}  \times \dfrac{2 \sqrt{5}  + 3}{2 \sqrt{5}  + 3}

\rm :\longmapsto\:y =\dfrac{2 \sqrt{5} + 3 }{ {(2 \sqrt{5}) }^{2} -  {3}^{2}  }

\red{\bigg \{ \because \:(x + y)(x - y) =  {x}^{2} -  {y}^{2}   \bigg \}}

\rm :\longmapsto\:y =\dfrac{2 \sqrt{5} + 3 }{20 - 9 }

\rm :\longmapsto\:y =\dfrac{2 \sqrt{5} + 3 }{11}

Now, Consider

 \red{\rm :\longmapsto\:x + y}

On substituting the values of x and y, we get

 \red{\rm : = \: \sqrt{5} + 1 + \dfrac{2 \sqrt{5}  + 3 }{11}}

On taking LCM, we get

 \red{\rm  = \: \dfrac{11 \sqrt{5}  + 11 + 2 \sqrt{5}  +  3 }{11}}

On rearranging the terms, we get

 \red{\rm  = \: \dfrac{11 \sqrt{5} + 2 \sqrt{5}  +  3 + 11 }{11}}

 \red{\rm  = \: \dfrac{13 \sqrt{5}  + 14 }{11}}

 \red{\bf\implies \:\boxed{ \tt{ \: x + y =  \dfrac{13 \sqrt{5}  + 14 }{11}} \: }}

Hence, option (B) is correct.

More Identities to know :-

(a + b)² = a² + 2ab + b²

(a - b)² = a² - 2ab + b²

a² - b² = (a + b)(a - b)

(a + b)² = (a - b)² + 4ab

(a - b)² = (a + b)² - 4ab

(a + b)² + (a - b)² = 2(a² + b²)

(a + b)³ = a³ + b³ + 3ab(a + b)

(a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions