Please answer
Don't spam please
Answers
Answer:
Construction: From the point D perpendicular DE and DF are drawn on BC and CA.
Proof: Now ∠DFC = 1 right angle
and ∠DEC = 1 right angle
and ∠DEC = 1 right angle
∴ In quadrileter CEDF,
∠FCE = ∠DFC = ∠DEC = right angle.
∴ CEDF is a rectangle.
∴ FD = CE and CF = ED
In rectangle CEDF, CF || ED
i.e CA || ED and ADB is the interceptor.
∴ Similar ∠CAD = similar ∠EDB
∴ ∠EDB = ∠DBE
[ ∠CAB = ∠ABC because ∆ABC is an isosceles triangle]
In ∆BDE, ∆CDE, ∆BDE
∴ DE = BE
∴ CF = D E = BE.
Now, ∆ADF, ∆BDE and ∆CDE
∴ AD² = AF² + FD²,
DB² = BE² + DE²,
CD² = CE² + DE²
Now, AD² + DB²,
➻ AF² + FD² + BE² +DE²
➻ CE² + CE² + DE² + DE²
➻ 2CE² + 2DE²
➻ 2(CE² + DE²)
➻ 2CD²
∴ AD² + DB² = 2CD²
(PROVED)
EXPLANATION.
ABC is an isosceles triangle,
∠C is a right angled triangle.
D is any point on AB.
As we know that,
Pythagoras theorem,
⇒ H² = P² + B².
Using the formula in this question, we get.
In ΔABC,
⇒ (AB)² = (AC)² + (BC)². ⇒(1).
In ΔADC = BDC.
⇒ AC = BC.
⇒ CD = CD [ Common].
⇒ AD = DB.
⇒ D is a mid point.
⇒ ΔADC ≅ ΔBDC [ S.S.S Criteria ].
⇒ ∠ADC = ∠BDC [ Corresponding pain of conjugate triangle are equal ].
⇒ ∠ADC + ∠BDC = 180°.
⇒ ∠ADC + ∠ADC = 180°.
⇒ 2∠ADC = 180°.
⇒ ∠ADC = 90°.
⇒ ∠BDC + ∠BDC = 180°.
⇒ 2∠BDC = 180°.
⇒ ∠BDC = 90°.
⇒ ∠ADC = ∠BDC = 90°.
In ΔADC,
⇒ (AC)² = (CD)² + (AD)². ⇒(2).
In ΔBDC,
⇒ (BC)² = (CD)² + (BD)². ⇒(3).
From equation (2) & (3), we get.
Adding equation (2) & (3), we get.
⇒ (AC)² + (BC)² = (CD)² + (AD)² + (CD)² + (BD)².
⇒ (AC)² + (BC)² = (AD)² + (BD)² + (2CD)².
As we know that,
⇒ AD = DB.
⇒ AD = AD.
⇒ AB = 2AD.
⇒ (2AD)² = (AD)² + (BD)² + (2CD)².
⇒ (4AD)² = (AD)² + (BD)² + (2CD)².
⇒ (4AD)² = (AD)² + (AD)² + (2CD)².
⇒ (4AD)² = (2AD)² + (2CD)².
⇒ (2AD)² = (2CD)².
⇒ (AD²) + (AD²) = (2CD)².
⇒ (AD)² + (BD)² = (2CD)².
HENCE PROVED.