Math, asked by gopi5354, 4 months ago

please answer earlier​

Attachments:

Answers

Answered by Anonymous
2

Step-by-step explanation:

this is proved that left hand side = right hand side

Attachments:
Answered by Asterinn
14

Given :

\rm \longrightarrow  {\bigg( {x}^{  \bf\frac{b + c}{c - a  } } \bigg)}^{ \frac{1}{a - b\: } }   {\rm \bigg( {x}^{  \bf\frac{ c + a}{a - b} } \bigg)}^{ \frac{1}{b - c} } \:   {\rm \bigg( {x}^{  \bf\frac{  a + b}{b - c} } \bigg)}^{ \frac{1}{c - a} }  = 1

To Prove :

LHS = RHS

Proof :

RHS = 1

\rm \longrightarrow LHS =  {\bigg( {x}^{  \bf\frac{b + c}{c - a  } } \bigg)}^{ \frac{1}{a - b\: } }   {\rm \bigg( {x}^{  \bf\frac{ c + a}{a - b} } \bigg)}^{ \frac{1}{b - c} } \:   {\rm \bigg( {x}^{  \bf\frac{  a + b}{b - c} } \bigg)}^{ \frac{1}{c - a} }

  \rm \longrightarrow \bigg( {x}^{  \bf\frac{b + c}{(c - a)(a - b)} } \bigg) \rm \bigg( {x}^{  \bf\frac{ c + a}{(a - b)( b - c)} } \bigg)\rm \bigg( {x}^{  \bf\frac{  a + b}{(c - a)( b - c)} } \bigg) \\  \\  \\ \large\rm \longrightarrow  {x}^{  \bf\frac{b + c}{(c - a)(a - b)}  + \bf\frac{ c + a}{(a - b)( b - c)}  + \bf\frac{  a + b}{(c - a)( b - c)}} \\  \\  \\ \rm \large \longrightarrow  {x}^{  \bf\frac{(b + c)( b - c) +( c + a)(c  -  a) +( a + b)(a   -  b)}{(c - a)(a - b)( b - c)}  } \\  \\  \\ \rm \large \longrightarrow    {x}^{ \frac{{b}^{2} -  {c}^{2}  + {c}^{2}  -  {a}^{2} +  {a}^{2} -  {b}^{2}  }{(c - a)(a - b)( b - c)} } \\  \\  \\ \rm \large \longrightarrow    {x}^{ \frac{{b}^{2} -  {b}^{2} + {c}^{2}   - {c}^{2}   +   {a}^{2}  -   {a}^{2}  }{(c - a)(a - b)( b - c)} } \\  \\  \\ \rm \large \longrightarrow    {x}^{ \frac{0  }{(c - a)(a - b)( b - c)} }  =  {x}^{0} \\  \\  \\ \rm  \large \longrightarrow    {x}^{0}  = 1

Therefore, RHS = LHS.

Hence Proved

Similar questions