please answer .. factorisation
Answers
Step-by-step explanation:
plz solve this further by u
I gave hint u
Step-by-step explanation:
Solution :-
9)
Given expression is (x - 1/x)^2+6 (x - 1/x) +9
Let a = (x - 1/x) then
=> a^2+6a+9
=> (a)^2+2(a)(3)+(3)^2
It is in the form of a^2+2ab+b^2
We know that
(a+b)^2 = a^2+2ab+b^2
=> (a)^2+2(a)(3)+(3)^2
=> (a+3)^2
=> (a+3)(a+3)
=> ( x - 1/x +3) ( x - 1/x -3)
(x - 1/x)^2+6 (x - 1/x) +9 = ( x - 1/x +3) ( x - 1/x -3)
______________________________________
10)
Given expression is 64x^6 - 729y^6
=> 2^6 x^6 - 3^6 y^6
=> (2x)^6 - (3y)^6
=>[(2x)^3]^2 - [(3y)^3]^2
It is in the form of (a+b)(a-b)
Where a = (2x)^3 and b = (3y)^3
We know that
(a+b)(a-b)= a^2-b^2
=> [(2x)^3]^2 - [(3y)^3]^2
=> [(2x)^3+(3y)^3] [(2x)^3-(3y)^3]
=> (2x+3y)(4x^2-6xy+9y^2)(2x-3y)(4x^2+6xy+9y^2)
=>(2x+3y)(2x-3y)(4x^2+6xy+9y^2)(4x^2-6xy+9y^2)
Since ,a^3+b^3 = (a+b)(a^2-ab+b^2)
a^3-b^3 = (a-b)(a^2+ab+b^2)
64x^6 - 729y^6=
(2x+3y)(2x-3y)(4x^2+6xy+9y^2)(4x^2-6xy+9y^2)
________________________________
Used formulae:-
- a^3-b^3 = (a-b)(a^2+ab+b^2)
- a^3+b^3 = (a+b)(a^2-ab+b^2)
- (a+b)(a-b)=a^2-b^2
- (a+b)^2 = a^2+2ab+b^2
- (a-b)^2 = a^2-2ab+b^2