Math, asked by sam1344, 2 months ago

please answer fast 1+cos a /sec a-tan a - 1-cos a / seca+tana=2(1+tana) prove ​

Answers

Answered by Tan201
7

Step-by-step explanation:

We need to prove, \frac{1+cosA}{secA-tanA}-\frac{1-cosA}{secA+tanA}=2(1+tanA)

LHS=\frac{1+cosA}{secA-tanA}-\frac{1-cosA}{secA+tanA}

\frac{1+cosA}{\frac{1}{cosA} -\frac{sinA}{cosA} } -\frac{1-cosA}{\frac{1}{cosA} +\frac{sinA}{cosA} } (tanA=\frac{sinA}{cosA}, secA=\frac{1}{cosA} )

\frac{1+cosA}{\frac{1-sinA}{cosA}  } -\frac{1-cosA}{\frac{1+sinA}{cosA}  }

\frac{cosA(1+cosA)}{1-sinA } -\frac{cosA(1-cosA)}{1+sinA  }

\frac{cosA+cos^2A}{1-sinA } -\frac{cosA-cos^2A}{1+sinA  }

\frac{(cosA+cos^2A)(1+sinA)}{(1-sinA)(1+sinA) } -\frac{(cosA-cos^2A)(1-sinA)}{(1+sinA)(1-sinA)  }

\frac{cosA+sinAcosA+cos^2A+cos^2AsinA}{1^2-sin^2A } -\frac{cosA-sinAcosA-cos^2A+cos^2AsinA}{1^2-sin^2A  }

((a+b)(a-b)=a^2-b^2)

\frac{cosA+sinAcosA+cos^2A+cos^2AsinA-(cosA-sinAcosA-cos^2A+cos^2AsinA)}{1-sin^2A }

\frac{cosA+sinAcosA+cos^2A+cos^2AsinA-cosA+sinAcosA+cos^2A-cos^2AsinA}{cos^2A }

(cos^2A=1-sin^2A)

\frac{cosA-cosA+sinAcosA+sinAcosA+cos^2A+cos^2A+cos^2AsinA-cos^2AsinA}{cos^2A }

\frac{2sinAcosA+2cos^2A}{cos^2A }

\frac{2cosA(sinA+cosA)}{cos^2A }

\frac{2(sinA+cosA)}{cosA }

2(\frac{sinA+cosA}{cosA })

2(\frac{sinA}{cosA}+\frac{cosA}{cosA })

2(\frac{cosA}{cosA }+\frac{sinA}{cosA})

2(1+tanA)=RHS (tanA=\frac{sinA}{cosA})

\frac{1+cosA}{secA-tanA}-\frac{1-cosA}{secA+tanA}=2(1+tanA)

LHS=RHS

∴ Hence proved.

Answered by sandy1816
0

 \frac{1 + cosa}{seca  -  tana}  -  \frac{ 1 - cosa}{seca + tana}  \\  \\  =  \frac{cosa(1 + cosa)}{1 - sina}  -  \frac{cosa(1 - cosa)}{1 + sina}  \\  \\  = cosa( \frac{1 + sina + cosa + sinacosa - 1 + sina  + cosa- sinacosa}{1 -  {sin}^{2}a } ) \\  \\  =  \frac{2(sina + cosa)}{cosa}  \\  \\  = 2(1 + tana)

Similar questions