Math, asked by smriti2004, 1 year ago

Please answer fast..​

Attachments:

Answers

Answered by Anonymous
27

Solution :-

Given :-

 a = \dfrac{\sqrt{5} + \sqrt{2}}{\sqrt{5} - \sqrt{2}}

 b = \dfrac{\sqrt{5} - \sqrt{2}}{\sqrt{5} + \sqrt{2}}

First we have to rationalise the denominators :-

For a :-

 a = \dfrac{\sqrt{5} + \sqrt{2}}{\sqrt{5} - \sqrt{2}} \times \dfrac{\sqrt{5} + \sqrt{2}}{\sqrt{5} + \sqrt{2}}

 a = \dfrac{( \sqrt{5} + \sqrt{2})^2}{(\sqrt{5})^2 - (\sqrt{2})^2}

 a = \dfrac{ 5 + 2\sqrt{10} + 2}{5 - 2}

 a = \dfrac{7 + 2\sqrt{10}}{3}

For b :-

 b = \dfrac{\sqrt{5} - \sqrt{2}}{\sqrt{5} + \sqrt{2}} \times \dfrac{\sqrt{5} - \sqrt{2}}{\sqrt{5} - \sqrt{2}}

 b = \dfrac{( \sqrt{5} - \sqrt{2})^2}{(\sqrt{5})^2 - (\sqrt{2})^2}

 b= \dfrac{ 5 - 2\sqrt{10} + 2}{5 - 2}

 b = \dfrac{7 -2\sqrt{10}}{3}

Now

3a² + 4ab - 3b²

 \small{= 3.\left( \dfrac{7 + 2\sqrt{10}}{3}\right)^2 + 4.\left( \dfrac{7 + 2\sqrt{10}}{3}\right)\left( \dfrac{7 - 2\sqrt{10}}{3}\right) - 3.\left( \dfrac{7 - 2\sqrt{10}}{3}\right)^2}

\small{ = \left(\dfrac{49 + 28\sqrt{10} + 40}{3}\right) + 4.\left( \dfrac{(7)^2 - (2\sqrt{10})^2}{3^2}\right) - \left(\dfrac{49 - 28\sqrt{10} + 40}{3}\right)}

\small{ = \dfrac{89 + 28\sqrt{10} - 89 + 28\sqrt{10}}{3} + 4.\left(\dfrac{49 - 40}{9}\right)}

 = \dfrac{56\sqrt{10}}{3} + \dfrac{4 \times 9 }{9}

 = 4 + \dfrac{56\sqrt{10}}{3}


Anonymous: If any queries feel free to ask ! ,, Deleted the spam one !
Similar questions