Math, asked by shailesh80, 1 year ago

Please answer fast ​

Attachments:

Answers

Answered by riyapal2004ll
0

Step-by-step explanation:

in a right angle triangle ABC angle is equal to 90 degree and 5 sin square B + 7 cos square c + 4 upon 3 + 8 10 square 60 is equal to 7 upon 27 if AC is equal to 3 find the perimeter of triangle ABC

\frac{5Sin^2B + 7Cos^2C + 4}{3 + 8 Tan^260} = \frac{7}{27}

3+8Tan

2

60

5Sin

2

B+7Cos

2

C+4

=

27

7

Tan 60 = √3

Tan²60 = 3

Cos C = SinB as B+C = 90

=> \frac{5Sin^2B + 7Sin^2B + 4}{3 + (8\times 3)} = \frac{7}{27}

3+(8×3)

5Sin

2

B+7Sin

2

B+4

=

27

7

=> \frac{12Sin^2B + 4}{27} = \frac{7}{27}

27

12Sin

2

B+4

=

27

7

=> 12 Sin²B + 4 = 7

=> 12 Sin²B = 3

=> Sin²B = 3/12

=> Sin²B = 1/4

=> Sin B = 1/2

SinB = AC/BC

1/2 = 3/BC

=> BC = 6

AB² = BC² - AC²

=> AB² = 6² - 3²

=> AB² = 36 - 9

=> AB² = 27

=> AB = 3√3

=> AB = 5.2

Perimeter = AB + BC + AC

= 5.2 + 6 + 3

= 14.2

mark as brainliest

Similar questions