Math, asked by ampshubha, 11 months ago

Please answer fast ​

Attachments:

Answers

Answered by disha4044
0

Answer:

hope it helps you.....

Attachments:
Answered by rishu6845
5

To prove --->

 \dfrac{1 \:  + cos \:  \alpha }{sin \:  \alpha  }  \:  -  \dfrac{sin \alpha }{1 \:  +  \: cos \:  \alpha }  \:  = 2 \: cot \:  \alpha

Concept used ---->

1)

 \green{{(a \:  +  \: b \: )}^{2} \:  =  {a}^{2} \:  +  {b}^{2} \:  +  \:  2 \: a \: b} }

2)

 {sin}^{2} \alpha  \:  =  \: 1 \:  -  \:  {cos}^{2} \:  \alpha

3)

cot \alpha  \:  =  \dfrac{cos \:  \alpha }{sin \:  \alpha }

Proof----> LHS

 =  \dfrac{1 \:  +  \: cos \:  \alpha }{sin \:  \alpha } \:  -  \:  \dfrac{sin \alpha }{1 \:  +  \: cos \:  \alpha }

 =  \dfrac{( \: 1 \:  +  \: cos \alpha  \: ) ^{2} \:  -  {sin}^{2}  \:  \alpha  }{sin \:  \alpha \: ( \: 1 \:  +  \: cos \alpha  \: ) }

 =  \dfrac{1 \:  +  \:  {cos}^{2} \alpha  \:  +  \: 2 \: cos \alpha  \:  -  \:  {sin}^{2} \alpha   }{sin \alpha  \: ( \: 1 \:  +  \: cos \alpha  \: )}

 =  \dfrac{1 \:  +  \:  {cos}^{2} \alpha \:  +  \: 2 \: cos \alpha  \:  -  \: ( \: 1 \:  -  \:  {cos}^{2} \alpha  \: )   }{sin \alpha  \: ( \: 1 \:  +  \: cos \alpha  \: )}

 =  \dfrac{1 \:  +  {cos}^{2} \alpha  \:  + 2 \: cos \alpha  \:  -  \: 1 \:  +  \:  {cos}^{2} \alpha   }{sin \alpha  \: ( \: 1 \:  +  \: cos \alpha  \: )}

 - 1 \: and \:  + 1 \: cancel \: out \: from \: numerator \: and \: we \: get

 =  \dfrac{2 \: cos \alpha  \:  +  \: 2 \:  {cos}^{2} \alpha  }{sin \alpha  \: ( \: 1 \:  +  \: cos \alpha  \: )}

 =  \dfrac{2 \: cos \alpha  \: ( \: 1 \:  +  \: cos \alpha  \: )}{sin \alpha  \: ( \: 1 \:  +  \: cos \alpha  \: )}

( \: 1 \:  +  \: cos \alpha  \: ) \: is \: cancel \: out \: from \: numerator \: and \: denominator \: and \: we \: get \:

 =  \dfrac{2 \: cos \alpha }{sin \alpha }

 = 2 \: ( \dfrac{cos \alpha }{sin \alpha  \: } )

 = 2 \: cot \alpha

= RHS

Similar questions