Math, asked by Sanya273, 9 months ago

Please answer fast !! ​

Attachments:

Answers

Answered by BrainlyPopularman
7

Question :

▪︎ If  { \bold{ \:  \:   \sqrt{3} = 1.732 \:  \: }} , then find the value of  { \bold{ \:  \:   \sqrt{ \dfrac{2 -  \sqrt{3} }{2 +  \sqrt{3} } } = ? \:  \: }} \\

ANSWER :–

  \\  \longrightarrow  { \red{ \boxed{  \bold{ \:  \:    \sqrt{ \dfrac{2 -  \sqrt{3} }{2 +  \sqrt{3} } } =   \:  \: \pm \: (0.268) \:  \: }}}} \\

EXPLANATION :

GIVEN :

 \\  { \bold{ \:  \implies   \sqrt{3} = 1.732 \:  \: }} \\

TO FIND :

  \\ { \bold{ \:  \:   \implies \sqrt{ \dfrac{2 -  \sqrt{3} }{2 +  \sqrt{3} } } = ? \:  \: }} \\

SOLUTION :

  \\ { \bold{ \:  \:  \:  \:  \:  \:  \:  \:  =  \:  \:  \:  \:  \:  \sqrt{ \dfrac{2 -  \sqrt{3} }{2 +  \sqrt{3} } }  \:  \: }} \\

• Now Rationalization –

  \\ { \bold{ \:  \:  \:  \:  \:  \:  \:  \:  =  \:  \:  \:  \:  \:  \sqrt{ \dfrac{2 -  \sqrt{3} }{2 +  \sqrt{3} }  \times \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} }  }  \:  \: }} \\

  \\ { \bold{ \:  \:  \:  \:  \:  \:  \:  \:  =  \:  \:  \:  \:  \:  \sqrt{ \dfrac{(2 -  \sqrt{3} )^{2}  }{ {(2)}^{2}   -  ( \sqrt{3})^{2}  }  }  \:  \: }} \\

  \\ { \bold{ \:  \:  \:  \:  \:  \:  \:  \:  =  \:  \:  \:  \:  \:  \sqrt{ \dfrac{(2 -  \sqrt{3} )^{2}  }{4 - 3}}  \:  \: }} \\

  \\ { \bold{ \:  \:  \:  \:  \:  \:  \:  \:  =  \:  \:  \:  \:  \:  \sqrt{ {(2 -  \sqrt{3} )^{2}  }}  \:  \: }} \\

  \\ { \bold{ \:  \:  \:  \:  \:  \:  \:  \:  =  \:  \:   \pm (2 -  \sqrt{3}) }} \\

• Now put the value of    { \bold{ \:    \sqrt{3} \:  \:  - }}

  \\ { \bold{ \:  \:  \:  \:  \:  \:  \:  \:  =  \:  \:   \pm  \: (2 -  1.732) }} \\

  \\ { \bold{ \:  \:  \:  \:  \:  \:  \:  \:  =  \:  \:   \pm  \: (0.268) }} \\

Hence ,    { \bold{ \:  \:    \sqrt{ \dfrac{2 -  \sqrt{3} }{2 +  \sqrt{3} } } =   \:  \: \pm \: (0.268) \:  \: }} \\

  \\   \bigstar \:  \: \large { \red{  \bold{  \underline{used \:  \: formula} } : -  }} \\

  \\   { \blue{  \bold{(1) \:  \:  \: (a - b)(a + b) =  {a}^{2}  -  {b}^{2} }}} \\

  \\   { \blue{  \bold{(2) \:  \:  \: {(a -b)}^{2}  =  {a}^{2}  +  {b}^{2}  - 2ab }}} \\

Answered by prajwal1697
0

Step-by-step explanation:

Question :–

▪︎ If { \bold{ \: \: \sqrt{3} = 1.732 \: \: }}

3

=1.732 , then find the value of \begin{lgathered}{ \bold{ \: \: \sqrt{ \dfrac{2 - \sqrt{3} }{2 + \sqrt{3} } } = ? \: \: }} \\\end{lgathered}

2+

3

2−

3

=?

ANSWER :–

\begin{lgathered}\\ \longrightarrow { \red{ \boxed{ \bold{ \: \: \sqrt{ \dfrac{2 - \sqrt{3} }{2 + \sqrt{3} } } = \: \: \pm \: (0.268) \: \: }}}} \\\end{lgathered}

2+

3

2−

3

=±(0.268)

EXPLANATION :–

GIVEN :–

\begin{lgathered}\\ { \bold{ \: \implies \sqrt{3} = 1.732 \: \: }} \\\end{lgathered}

3

=1.732

TO FIND :–

\begin{lgathered}\\ { \bold{ \: \: \implies \sqrt{ \dfrac{2 - \sqrt{3} }{2 + \sqrt{3} } } = ? \: \: }} \\\end{lgathered}

2+

3

2−

3

=?

SOLUTION :–

\begin{lgathered}\\ { \bold{ \: \: \: \: \: \: \: \: = \: \: \: \: \: \sqrt{ \dfrac{2 - \sqrt{3} }{2 + \sqrt{3} } } \: \: }} \\\end{lgathered}

=

2+

3

2−

3

• Now Rationalization –

\begin{lgathered}\\ { \bold{ \: \: \: \: \: \: \: \: = \: \: \: \: \: \sqrt{ \dfrac{2 - \sqrt{3} }{2 + \sqrt{3} } \times \frac{2 - \sqrt{3} }{2 - \sqrt{3} } } \: \: }} \\\end{lgathered}

=

2+

3

2−

3

×

2−

3

2−

3

\begin{lgathered}\\ { \bold{ \: \: \: \: \: \: \: \: = \: \: \: \: \: \sqrt{ \dfrac{(2 - \sqrt{3} )^{2} }{ {(2)}^{2} - ( \sqrt{3})^{2} } } \: \: }} \\\end{lgathered}

=

(2)

2

−(

3

)

2

(2−

3

)

2

\begin{lgathered}\\ { \bold{ \: \: \: \: \: \: \: \: = \: \: \: \: \: \sqrt{ \dfrac{(2 - \sqrt{3} )^{2} }{4 - 3}} \: \: }} \\\end{lgathered}

=

4−3

(2−

3

)

2

\begin{lgathered}\\ { \bold{ \: \: \: \: \: \: \: \: = \: \: \: \: \: \sqrt{ {(2 - \sqrt{3} )^{2} }} \: \: }} \\\end{lgathered}

=

(2−

3

)

2

\begin{lgathered}\\ { \bold{ \: \: \: \: \: \: \: \: = \: \: \pm (2 - \sqrt{3}) }} \\\end{lgathered}

=±(2−

3

)

• Now put the value of { \bold{ \: \sqrt{3} \: \: - }}

3

\begin{lgathered}\\ { \bold{ \: \: \: \: \: \: \: \: = \: \: \pm \: (2 - 1.732) }} \\\end{lgathered}

=±(2−1.732)

\begin{lgathered}\\ { \bold{ \: \: \: \: \: \: \: \: = \: \: \pm \: (0.268) }} \\\end{lgathered}

=±(0.268)

Hence , \begin{lgathered}{ \bold{ \: \: \sqrt{ \dfrac{2 - \sqrt{3} }{2 + \sqrt{3} } } = \: \: \pm \: (0.268) \: \: }} \\\end{lgathered}

2+

3

2−

3

=±(0.268)

\begin{lgathered}\\ \bigstar \: \: \large { \red{ \bold{ \underline{used \: \: formula} } : - }} \\\end{lgathered}

usedformula

:−

\begin{lgathered}\\ { \blue{ \bold{(1) \: \: \: (a - b)(a + b) = {a}^{2} - {b}^{2} }}} \\\end{lgathered}

(1)(a−b)(a+b)=a

2

−b

2

\begin{lgathered}\\ { \blue{ \bold{(2) \: \: \: {(a -b)}^{2} = {a}^{2} + {b}^{2} - 2ab }}} \\\end{lgathered}

(2)(a−b)

2

=a

2

+b

2

−2ab

Similar questions