Math, asked by yash842004, 1 year ago

please answer fast.....

Attachments:

yash842004: please explain

Answers

Answered by lakshay9122
4

Hope it will help you...

Please mark as brainliest

Attachments:

lakshay9122: mrk as brainliest
yash842004: i don't know how mark as brainliest
lakshay9122: when another person give the ans. of ur question then an option comes tap on that
yash842004: ok
lakshay9122: above the answer
Answered by Anonymous
12
Taking L.H.S

\dfrac{sin \: A \: + \: cos \: A}{sin \: A\: - \: cos \: A} + \dfrac{sin \: A \: - \: cos \: A}{sin \: A \: + \: cos \: A}

Taking LCM we get;

=  \dfrac{ {(sin \: A \: + \: cos \: A) \: }^{2} + \: {(sin \: A \: - \: cos \: A)}^{2} }{(sin \: A \: - cos \: A) \: (sin \: A \: + \: cos \: A)}

=  \dfrac{ {sin \: }^{2} A\: + \: \: {cos}^{2}A \: + \: 2sin \: A \: cos \: A \: + \: {sin \: }^{2} A\: + \: {cos \: }^{2} A \: - \: 2sin \: A \: cos \: A } { {sin \: }^{2} A\: - \: {cos \: }^{2} A }

= \dfrac{1 \: + \: 1}{ {sin}^{2} A \: - \: {cos}^{2} A}

=  \dfrac{2}{ {sin}^{2} A \: - \: {cos}^{2} A}

= \dfrac{2}{(1 \: - \: {sin}^{2} A)\:-{cos}^{2}\:A}

= \dfrac{2}{1 \: - \: {cos}^{2} A \:-\:{cos}^{2}A}

= \dfrac{2}{1\:-\: 2{cos}^{2} A}

Now..

L.H.S = R.H.S

Hence proved.

yash842004: thanks..
Anonymous: Welcome :)
Similar questions