please answer fast.
Attachments:
Answers
Answered by
0
let 'a' be any positive integer
using euclid's division algoritm
a=bq+r
here b=3 and r=0,1,2
case 1
r=0
a=3q
cubing both sides
a^3 = 27q^3
a^3 = 9(3q^3)
a^3 = 9m ( for m=3q^3 is any integer)
case2
r=1
a=3q+1
cubing both sides
a^3 = (3q+1)^3
a^3 = 27q^3 +1 +3× 3q(3q+1)
a^3 = 27q^3 +9q(3q+1) +1
a^3 = 9(3q^3 +q(3q+1))+1
a^3 = 9m +1 ( for m= 3q^3 +q(3q+1) is any integer)
case 3
r=2
a=3q+2
cubing both sides
a^3 = (3q+2)^3
a^3 = 27q^3+ 8 +3×3q×2×(3q+2)
a^3 = 9(3q^3 +2(3q+2)) + 8
a^3 = 9m +8 ( for m= 3q^3 +2(3q+2) is any integer)
Ttherefore cube of any positive integer can be written in the form of 9m , 9m+1 and 9m +8.
Similar questions