Math, asked by jigishamutreja31, 4 months ago

Please answer fast and correct. If u r not sure pls write that not sure. If u will write I will mark u brainist

Attachments:

Answers

Answered by SarcasticL0ve
8

Given: Three sides of a triangle are 5 m, 6 m and 7 m respectively.

To find: Area of triangle?

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀

\underline{\bigstar\:\boldsymbol{Using\: Heron's\:Formula\::}}\\ \\

\star\;{\boxed{\sf{\pink{Area_{\;(triangle)} = \sqrt{s(s - a)(s - b)(s - c)}}}}}\\ \\

:\implies\sf s = semi - perimeter\\ \\

:\implies\sf s = \dfrac{a + b + c}{2}\\ \\

\sf Here \begin{cases} & \sf{a = \bf{5\:m}}  \\ & \sf{b = \bf{6\:m}} \\ & \sf{c = \bf{7\:m}}  \end{cases}\\ \\

:\implies\sf s = \dfrac{5 + 6 + 7}{2}\\ \\

:\implies\sf s = \cancel{\dfrac{18}{2}}\\ \\

:\implies{\underline{\boxed{\frak{\purple{s = 9\:m}}}}}\;\bigstar

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀

\bf{\dag}\;{\underline{\frak{Now,\:Putting\:values\;in\;formula}}}\\ \\

:\implies\sf Area_{\;\triangle} = \sqrt{9(9 - 5)(9 - 6)(9 - 7)}\\ \\

:\implies\sf Area_{\;\triangle} = \sqrt{9 \times 4 \times 3 \times 2}\\ \\

:\implies\sf Area_{\;\triangle} = 3 \times 2 \sqrt{3 \times 2}\\ \\

:\implies{\underline{\boxed{\frak{\purple{Area_{\;\triangle} = 6\sqrt{6}\:m^2}}}}}\;\bigstar\\ \\

\therefore\:{\underline{\sf{Area\:of\:triangle\:is\: \bf{6 \sqrt{6}\:cm^2}.}}}

Answered by tarracharan
5

Aɴsᴡᴇʀ :

\:

\rm \bf{Option (b),}\boxed{\tt{\red{6\sqrt{6}\: m^{2}}}}

\:

Gɪᴠᴇɴ :

\:

\begin{gathered} ❍ \:\rm \bf Sides \begin{cases} & \rm{a = {5\:m}} \\ & \rm{b = {6\:m}} \\ & \rm{c = {7\:m}} \end{cases} \\\end{gathered}

Tᴏ Fɪɴᴅ :

\:

❍ Area of the triangle (∆).

\:

Fᴏʀᴍᴜʟᴀ :

\:

\boxed{\sf{\green{∆=\sqrt{s(s-a)(s-b)(s-c)}}}}

Where, \sf \bf {\:s = \dfrac{a+b+c}{2}}

\:

Sᴏʟᴜᴛɪᴏɴ :

\:

\sf{\purple{s = \dfrac{a+b+c}{2}}}

\:

\sf{\purple{s = \dfrac{5+6+7}{2}}}

\:

\sf{\purple{s = \dfrac{18}{2} = 9m}}

\:

\:

\sf{\red{∆=\sqrt{s(s-a)(s-b)(s-c)}}}

\:

\sf{\red{∆=\sqrt{9(9-5)(9-6)(9-7)}}}

\:

\sf{\red{∆=\sqrt{9(4)(3)(2)}}}

\:

\sf{\red{∆=\sqrt{36\times 6}}}

\:

\sf{\red{∆=}}{\bf{\red{6\sqrt{6} \:m^2}}}

Similar questions