Math, asked by nilakshi1234, 1 year ago

please answer fast and show steps

Attachments:

Answers

Answered by Anonymous
0
45 degree...........

nilakshi1234: show the working
nilakshi1234: thanks
nilakshi1234: ok
Answered by BEJOICE
1

 \sin( \alpha )  =  \frac{1}{ \sqrt{5} }  \:  \: then \\  \cos( \alpha )  =  \sqrt{1 -  { \sin}^{2} \alpha  }  =  \frac{2}{ \sqrt{5} }   \\  \sin( \beta )  =  \frac{1}{ \sqrt{10} }  \:  \: then \\  \cos( \beta )  =  \frac{3}{ \sqrt{10} }  \\  \sin( \alpha  +  \beta )  =  \sin( \alpha )  \cos( \beta )  +  \cos( \alpha )  \sin( \beta )  \\  \frac{1}{ \sqrt{5} }  \times  \frac{3}{ \sqrt{10} }  +  \frac{2}{ \sqrt{5} }  \times  \frac{1}{ \sqrt{10} }  \\  \frac{5}{ \sqrt{5}  \times  \sqrt{10} }  =  \frac{ \sqrt{5} }{ \sqrt{10} }  =  \frac{1}{ \sqrt{2} }  \\ therefore \:  \:  \alpha  +  \beta  = 45 \: degree

nilakshi1234: thanks
BEJOICE: Most Welcome
BEJOICE: Thanks for the brainliest
nilakshi1234: u r wlcm
Similar questions