Math, asked by keiastro1223, 1 month ago

please answer fast i will make you brainlist

Attachments:

Answers

Answered by gbiju37
2

Answer:

REFER THE ABOVE ATTACHMENT

Step-by-step explanation:

HOPE THIS WILL BE HELPFUL 4 U ʘ‿ʘ

Attachments:
Answered by BrainlyRish
115

⠀⌬⠀ Find the Value of  ❝ x + y + xy ❞  if ,

\qquad \bigstar \:\:\sf \bf{x} \:\sf {=\: \dfrac{\sqrt{5}\:+\:\sqrt{3}}{\sqrt{5}\:-\:\sqrt{3}}\:}\:\&\:\bf{y}\:=\:\sf{\dfrac{\sqrt{5}\:+\:\sqrt{3}}{\sqrt{5}\:-\:\sqrt{3}}}\:\:\:.\:\\\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀

\qquad \dashrightarrow \:\:\sf \bf{x} \:\sf{ =\: \dfrac{\sqrt{5}\:+\:\sqrt{3}}{\sqrt{5}\:-\:\sqrt{3}}\:\:\&\:}\:\bf{y}\:\sf{=\:\dfrac{\sqrt{5}\:+\:\sqrt{3}}{\sqrt{5}\:-\:\sqrt{3}}\:\:}\:\:\\\\

\qquad \bigstar \:\:\pmb{\sf{\purple {\underline{ By \:Rationalizing \:the \:Given \:Value \:of \:x \:and \:y \::\:}}}}\\\\

\qquad \dashrightarrow \sf \:\: x \:=\: \dfrac{\sqrt{5}\:+\:\sqrt{3}}{\sqrt{5}\:-\:\sqrt{3}}\:\:\\\\

\qquad \dashrightarrow \sf \:\: x \:=\: \dfrac{\sqrt{5}\:+\:\sqrt{3}}{\sqrt{5}\:-\:\sqrt{3}}\:\times \:\dfrac{\sqrt{5}\:+\:\sqrt{3}}{\sqrt{5}\:+\:\sqrt{3}}\:\:\\\\

\qquad \dashrightarrow \sf \:\: x \:=\: \dfrac{\big( \sqrt{5}\:\big)^2 \:+\:2\sqrt{5}\times \sqrt{3} +\:\big( \sqrt{3}\big)^2}{\big( \sqrt{5}\big)^2\:-\:\big( \sqrt{3}\big)^2}\:\:\\\\

\qquad \dashrightarrow \sf \:\: x \:=\: \dfrac{ 5 \:+\:2\sqrt{15} +\:3 }{ 5\:-\:3 }\:\:\\\\

\qquad \dashrightarrow \sf \:\: x \:=\: \dfrac{ 8 \:+\:2\sqrt{15} }{ 2 }\:\:\\\\

\qquad \dashrightarrow \underline {\boxed {\pmb{\frak{\purple {\:\: x \:=\:  4 \:+\:\sqrt{15} \:}}}}}\:\:\bigstar \:\\\\

\qquad \dashrightarrow \sf \:\: y \:=\: \dfrac{\sqrt{5}\:-\:\sqrt{3}}{\sqrt{5}\:+\:\sqrt{3}}\:\:\\\\

\qquad \dashrightarrow \sf \:\: y \:=\: \dfrac{\sqrt{5}\:-\:\sqrt{3}}{\sqrt{5}\:+\:\sqrt{3}}\:\times \:\dfrac{\sqrt{5}\:-\:\sqrt{3}}{\sqrt{5}\:-\:\sqrt{3}}\:\:\\\\

\qquad \dashrightarrow \sf \:\: y \:=\: \dfrac{\big( \sqrt{5}\:\big)^2 \:-\:2\sqrt{5}\times \sqrt{3} +\:\big( \sqrt{3}\big)^2}{\big( \sqrt{5}\big)^2\:-\:\big( \sqrt{3}\big)^2}\:\:\\\\

\qquad \dashrightarrow \sf \:\: y \:=\: \dfrac{ 5 \:-\:2\sqrt{15} +\:3 }{ 5\:-\:3 }\:\:\\\\

\qquad \dashrightarrow \sf \:\: y \:=\: \dfrac{ 8 \:-\:2\sqrt{15} }{ 2 }\:\:\\\\

\qquad \dashrightarrow \underline {\boxed {\pmb{\frak{\purple {\:\: y \:=\:  4 \:-\:\sqrt{15} \:}}}}}\:\:\bigstar \:\\\\

Therefore ,

\qquad \bigstar \:\:\pmb{\sf{x\:=\:}\pink{  \: 4 \:+\:\sqrt{15}\:}\:\:\:\&\:\:\:\:\sf{y\:=\:}\pink {\:4 \:-\:\sqrt{15}\:\:\:.}}\:\\\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀

⠀¤ Finding Value of ❝ x + y + xy ❞ :

\qquad:\implies \sf x + y + x y \:\\\\

\qquad \dag\:\underline {\frak{ Substituting \:known \:Values \:\::\:}}\\\\

 \qquad:\implies \sf \Big\{ \big( 4 \:+\:\sqrt{15} \big)  +  \big( 4 \:-\:\sqrt{15} \big) \Big\} + \Big\{ \big(4 \:+\:\sqrt{15}\big)\:\big( 4 \:-\:\sqrt{15}\big)\:\Big\} \:\\\\\\ \qquad:\implies \sf \Big\{  4 \:+\:\sqrt{15}  +  4 \:-\:\sqrt{15}  \Big\} + \Big\{ \big( 4\big)^2\:-\:\big( \sqrt{15}\big)^2\:\Big\} \:\\\\\\ \qquad:\implies \sf \Big\{  4 \:+\:   4 \: \Big\} + \Big\{ 16\:-\:15\:\Big\} \:\\\\\\ \qquad:\implies \sf  8 \:  +  1\: \:\\\\\\  \qquad:\implies \underline {\boxed {\pmb{\frak{\red{ \: x + y + x y \:=\:9 \:}}}}}\:\:\bigstar \:\\\\\\

\qquad \therefore \:\underline {\sf Hence ,\:The \:Value \:of \:x + y + x y\:is\:\pmb{\bf 9\:}\:.}\\

Similar questions