Please answer fast important for me
Attachments:
Answers
Answered by
2
Answer:
x² + y² + z² = r²
Step-by-step explanation:
Given:
x = r sinAcosC
y = r sinAsinC
z = r cosA
LHS:
x² + y² + z²
= (r sinAcosC)² + (r sinAsinC)² + (r cosA)²
= r²[sin²Acos²C + sin²Asin²C + cos²A]
= r²[sin²A(1 - sin²C) + sin²Asin²C + cos²A]
= r²[sin²A - sin²Asin²C + sin²Asin²C + cos²A]
= r²[sin²A + cos²A]
= r²
= RHS
Hope it helps!
Answered by
3
Step-by-step explanation:
Given, x=rsinAcosC ..equation..1
y=rsinAsinC .....equation 2
z=rcosA .....equation 3
squaring and adding all three equations we get the following
x2 +y2+z2=r2(sin2Acos2C + sin2Asin2C + cos2A)
=r2 {sin2A(cos2C + sin2C) + cos2A}
=r2 {sin2A+ cos2A}
∴x2 +y2+z2=r2
Similar questions