Math, asked by progyanalok3, 10 months ago

Please answer fast in copy ​

Attachments:

Answers

Answered by StarrySoul
12

Given :

•P = 2y² - 5 - 2y

•Q = y² - 3y + 6

•R = y² - 4y + 2

To Find :

• P + 2Q + 2R

Solution :

→ P + 2Q + 2R

Put the value of P,Q and T

 \longrightarrow \sf \: (2 {y}^{2} - 5 - 2y) + 2( {y}^{2}   - 3y + 6) + 2( {y}^{2}  - 4y + 2)

 \longrightarrow \sf \:( 2 {y}^{2}  - 5 - 2y )+ (2 {y}^{2}  - 6y  + 12) + (2 {y}^{2}  - 8y + 4)

 \longrightarrow \sf \:2 {y}^{2}  - 5 - 2y + 2 {y}^{2}  - 6y  + 12 + 2 {y}^{2}  - 8y + 4

 \longrightarrow \sf \:2 {y}^{2}  + 2 {y}^{2}  + 2 {y}^{2}  - 2y - 6y - 8y  - 5 + 12 + 4

 \longrightarrow \sf \: 6 {y}^{2} -  8y - 8y - 5 + 16

 \longrightarrow  \: \sf \red{ 6 {y}^{2} - 16y  + 11}

\therefore Value of P + 2Q + 2R = 6 - 16y + 11

Similar questions