Math, asked by narangshuchidn, 10 months ago

Please answer fast this problem

Attachments:

Answers

Answered by warylucknow
0

The value if 3.

Step-by-step explanation:

The expression is:

(\sqrt{32}-\sqrt{5})^{1/3}(\sqrt{32}+\sqrt{5})^{1/3}

Simplify the expression as follows:

(\sqrt{32}-\sqrt{5})^{1/3}(\sqrt{32}+\sqrt{5})^{1/3}=[(\sqrt{32}-\sqrt{5})(\sqrt{32}+\sqrt{5})]^{1/3}

                                              =[(\sqrt{32})^{2}-(\sqrt{5})^{2}]^{1/3}

                                              =[32-5]^{1/3}\\=27^{1/3}\\=(3^{3})^{1/3}\\=3

Thus, the value if 3.

Answered by parvd
6

Answer:

3

Step-by-step explanation:

( \sqrt[3]{ \sqrt{32}  -  \sqrt{5} }  \times ( \sqrt[3]{ \sqrt{32}  }  +  \sqrt{5} )

This can be directly mulitplied using the property of multiplication.

→There will be no change in the sign, Neither will affect the equations !!

Now,Multiplying internally,

 \sqrt[3]{( \sqrt{32}  -  \sqrt{5}) \times ( \sqrt{32}   +  \sqrt{5} )}

Now,

Multiplying internally,

According to formula,

(a+b)(a-b)=a²-b²

Here,

 =  >  \sqrt[3]{ { \sqrt{(32)} }^{2} -  \sqrt{( {5}^{2} )}  }

 =  >  \sqrt[3]{32 - 5} roots \: cancelled

 =  >  \sqrt[3]{27}

 \sqrt[3]{3 \times 3 \times 3}

=>(3)³^1/3

=> 3

so,the value of above expression is 3 .

Ans.

Similar questions