Math, asked by karubhaisurela10, 10 hours ago

PLEASE ANSWER FAST WITH FULL EXPLANATION.​

Attachments:

Answers

Answered by Anonymous
7

Answer:

n = -1/2

Step-by-step explanation:

Given that  \sf \dfrac{ {a}^{n + 1} +  {b}^{n + 1}  }{ {a}^{n} +  {b}^{n}  } is the G.M. between a and b.

Geometric mean between two number x and y is given by \sf \sqrt{ab}.

Therefore,

 \sf  \implies\dfrac{ {a}^{n + 1} +  {b}^{n + 1}  }{ {a}^{n} +  {b}^{n}  } =  \sqrt{ab}

 \sf  \implies{a}^{n + 1} +  {b}^{n + 1} =  \sqrt{ab} ( {a}^{n} +  {b}^{n}  )

 \sf  \implies{a}^{n + 1} +  {b}^{n + 1} =   ({a}^{n} \sqrt{ab}) +  (  {b}^{n} \sqrt{ab}   )

 \sf  \implies{a}^{n + 1} -   ({a}^{n} \sqrt{ab})  =   (  {b}^{n} \sqrt{ab}   ) -  {b}^{n + 1}

 \displaystyle \sf  \implies{a}^{n + 1} -   ({a}^{n} {a}^{ \frac{1}{2}} {b}^{ \frac{1}{2} }  )  =   (  {b}^{n}  {a}^{ \frac{1}{2}} {b}^{ \frac{1}{2}} ) -  {b}^{n + 1}

 \displaystyle \sf  \implies{a}^{n + 1} -   ({a}^{n +  \frac{1}{2} } {b}^{ \frac{1}{2} }  )  =   (  {b}^{n +  \frac{1}{2} }  {a}^{ \frac{1}{2}} ) -  {b}^{n + 1}

 \displaystyle \sf  \implies{a}^{n +  \frac{1}{2} } ( {a}^{ \frac{1}{2} } -{b}^{ \frac{1}{2} }  )  =  {b}^{n +  \frac{1}{2} } ( {a}^{ \frac{1}{2} } -{b}^{ \frac{1}{2} }  )

 \displaystyle \sf  \implies{a}^{n +  \frac{1}{2} } =  {b}^{n +  \frac{1}{2} }

 \displaystyle \sf  \implies \frac{{a}^{n +  \frac{1}{2} }}{{b}^{n +  \frac{1}{2} } } =  1

 \displaystyle \sf  \implies \left(\frac{a}{b}\right)^{n +  \frac{1}{2}}=  1

 \displaystyle \sf  \implies \left(\frac{a}{b}\right)^{n +  \frac{1}{2}}=    \left(\frac{a}{b} \right)^0

 \sf \implies n +  \dfrac{1}{2}  = 0

  \boxed{\sf \implies n   = -  \dfrac{1}{2} }

This is the required value of n.

Answered by manideepan09
3

Answer:

where should I put this link

group search krne wale me kya

nhi tho ek paper me likke send karlo

i think i'm wasting your Time

Similar questions