Math, asked by kumarkusu331537, 1 year ago

Please answer fastly​

Attachments:

Answers

Answered by Anonymous
17

SOLUTION

 =  >  \frac{bx}{a}  -  \frac{ay}{b}  + a + b = 0.........(1)   \\  =  > bx - ay + 2ab = 0 \\  =  > bx = ay - 2ab \\  =  > x =  \frac{ay - 2ab}{b} .............(2)

Substituting value of (2) in (1),

 \frac{b}{a} ( \frac{ay - 2b}{b} ) -  \frac{ay}{b}  + a + b = 0  \\  =  >  \frac{ay - 2ab}{a}  -  \frac{ay}{b}  + a + b = 0 \\  =  > \frac{a(y - 2b)}{a}  -  \frac{ay}{b}  + a + b = 0 \\  =  > y - 2b  -  \frac{ay}{b}  + a + b = 0 \frac{b - a}{b}  \\  =  > \frac{y(1 - a)}{b}  + a - b = 0 \\  =  >  \frac{y(1 - a)}{b}  = b - a \\  \\  =  > y =   \frac{(b - a)}{1  - \frac{a}{b} }  =  \frac{ \frac{(b - a)}{(b - a)} }{b} =  > b

Substituting value of y = b in equation (2).

x =  \frac{a(b) - 2ab}{b}  \\  =  > x =  \frac{ab - 2ab}{b}  \\  =  > x =  -  \frac{ab}{b}  \\  =  > x =  - a

Therefore,

x= -a & y= b

hope it helps ☺️

Similar questions