please answer fastly
Answers
Answer:
(i) ACB = 120 °
(ii) ACD = 60 °
(iii) AEB = 150 °
Step-by-step explanation:
(i) In ∆ CAD
angle CAD + angle ADC = angle ACB (exterior angle property)
So, 65° + 55° = angle ACB
angle ACB = 120°
(ii) In ∆ CAD
angle CAD + angle ADC + angle ACD = 180° ( angle sum property of a triangle)
65° + 55° + ACD = 180°
ACD = 180 - 120
angle ACD = 60 °
(iii) In ∆ BCE
angle CBE + angle BCE = angle AEB (exterior angle property)
So, 30° + 120° = angle AEB
angle AEB = 150°
Answer:
there is 180 degree in a triangle .
So, Angle A =65°
Angle B=55°
Sum of Angle A and B =(65+55)°= 120°
Angle ACD = 180°-120°=60°
Angle ACD + Angle ACB= 180 °
Angle ACB = 180° - 60° = 120°
Angle BEC+ Angle B + Angle ACB = 180°
Angle BEC + 30° +120° = 180°
Angle BEC+ 150° = 180°
Angle BEC = 180°-150°= 30°
Angle BEC+ Angle AEB = 180°
30° + Angle AEB= 180°
Angle AEB = 180° - 30° =150°
Hence , (I) Angle ACB = 120°
Angle(ii) ACD= 60°
ACD= 60°Angle (iii)AEB= 150°
Hope it helps