Math, asked by harshini2016, 1 month ago

please answer fastttttt​

Attachments:

Answers

Answered by TheFighter123
1

{\tt{\underline{Given :-}}}

\bullet\begin{cases} \bf \dfrac{3-2\sqrt{5}}{6-\sqrt{5}} = a+b\sqrt{5}\\ \bf \; a\;\;\&\;\;b \;are\;rational\end{cases}

{\tt{\underline{To\;find :-}}}

The respective values of a and b

{\tt{\underline{Answer :-}}}

On rationalizing the denominator of the fraction

LHS

\tt\dfrac{3-2\sqrt{5}}{6-\sqrt{5}}

\tt\dfrac{3-2\sqrt{5}}{6-\sqrt{5}}\times\dfrac{6-\sqrt{5}}{6-\sqrt{5}}

\tt\dfrac{3-2\sqrt{5}\times 6-\sqrt{5}}{6-\sqrt{5}\times6-\sqrt{5}}

\tt\dfrac{18+3\sqrt{5}-12\sqrt{5}-10}{36-\sqrt{5}\times\sqrt{5}}

\tt\dfrac{18+3\sqrt{5}-12\sqrt{5}-10}{36-5}

\tt\dfrac{8-9\sqrt{5}}{31}

RHS

\tt a+b\sqrt{5}

On comparing both sides we have got

a = 8/31 & b = -9/31

Answered by namratadalimbkar2529
1

Answer:

hii dear which std u i am boy

Similar questions