Math, asked by yogesh77791, 1 year ago

please answer for this

Attachments:

Answers

Answered by BEJOICE
0

using \: the \: identity \\  {(a + b + c)}^{3}  =  {a}^{3}  + {b}^{3}  + {c}^{3}  + 3(a + b + c)(ab + bc + ca) - 3abc -  -  - (1) \\ let \: a =  \frac{l}{m} . \:  \: b =  \frac{m}{n} . \:  \: c =  \frac{n}{l}  \\ then \:  \: given \:  \: condition \:  \: becomes \\ a + b + c = 0 -  -  -  - (2) \\ also \\ abc = \frac{l}{m}  \times   \frac{m}{n}  \times   \frac{n}{l}  = 1 -  -  - (3) \\ substituting \: (2) \:  \: and \:  \: (3) \:  \: in \:   identity (1) \\  {0}^{3}  =  {a}^{3}  + {b}^{3}  + {c}^{3}  + 3 \times 0 \times (ab + bc + ca) - 3 \times 1 \\ thus \:  \: {a}^{3}  + {b}^{3}  + {c}^{3} = 3 \\ therefore \\  \frac{ {l}^{3} }{ {m}^{3} }  + \frac{ {m}^{3} }{ {n}^{3} }   + \frac{ {n}^{3} }{ {l}^{3} }  = 3
Similar questions