Math, asked by Prathibha01, 9 months ago

PLEASE ANSWER FRIENDS ​

Attachments:

Answers

Answered by rishu6845
10

Answer:

\boxed{\huge{\blue{y = 3}}}

Step-by-step explanation:

\bold{To \: find} =  > solve \:  \\  \sqrt{y + 1}  \:  +  \:  \sqrt{2y - 5}  = 3

\bold{Concept \: used} =  >  \\  \boxed{\large{\green{{(a - b)}^{2}  =  {a}^{2}  +  {b}^{2}  - 2ab}}} \\ \\ \: \boxed{\large{\blue{ { ( \: \sqrt{x} \:  )}^{2}  = x}}}

\bold{Solution} =  >  \\  \sqrt{y + 1}  +  \sqrt{2y - 5}  = 3

 =  >  \sqrt{2y - 5}   = 3 -  \sqrt{y + 1}

squaring \: both \: sides

 =  >  {( \:  \sqrt{2y - 5}  \: )}^{2}  =  {( \: 3 -  \sqrt{y + 1} \: ) }^{2}

 =  > 2y - 5 =  {(3)}^{2}  +  {(  \: \sqrt{y + 1} \: ) }^{2}  - 2 \: (3) \: (  \sqrt{y + 1}  \: )

 =  > 2y - 5 = 9 + y + 1 - 6 \sqrt{y + 1}

 =  > 2y  - 5 - y -  10 =  - 6 \sqrt{y + 1}

 =  > y - 15 =  - 6 \sqrt{y + 1}

squaring \: both \: sides \: we \: get

 =  >  {(y - 15)}^{2}  = ( - 6 \sqrt{y + 1}  \:  )^{2}

 =  >  {(y)}^{2}  +  {(15)}^{2}  - 2(y) \: (15) = 36(y + 1)

 =  >  {y}^{2}  - 30y + 225 = 36y + 36

 =  >  {y}^{2}  - 30y - 36y + 225 - 36 = 0

 =  >  {y}^{2}  - 66y + 189 = 0

 =  >  {y}^{2}  - (63 + 3)y + 189 = 0

 =  >  {y}^{2}  - 63y - 3y + 189 = 0

 =  > y \: (y - 63) - 3 \: (y - 63) = 0

 =  >  (y - 63) \: (y - 3) \:  = 0

if \: y \: - 6 3 = 0 \\  =  > y = 63 \\ if \: y - 3 = 0 \\ =  >  y = 3

now \: we \: will \: verify \: that \: \\  these \: values \: satisfy \: given \\ equation \: or \: not \:

for \: y \:   = 63 \\ putting \: y = 63 \: in \: given \: equation \\  \sqrt{63 + 1}  +  \sqrt{2(63) - 5}  = 3 \\ =  >   \sqrt{64}  +  \sqrt{126 - 5}  = 3 \\  =  > 8 +  \sqrt{121}  = 3 \\  =  > 8 + 11 = 3 \\  =  > 19 = 3 \\ which \: is \: not \: true \: so \\ y = 6 3 \: is \: not \: a \: solution \: of \: given \: equation

now

for \: y \:  = 3 \\ putting \: y = 3 \: in \:given \:  equation \\  \sqrt{3 + 1}  +  \sqrt{2(3) -5}  = 3 \\  =  >  \sqrt{4}  +  \sqrt{6 - 5}  = 3 \\  =  > 2 +  \sqrt{1}  = 3 \\  =  > 2 + 1 = 3 \\  =  > 3 = 3 \\ which \: is \: true \: so \: y = 3 \: is \: soution \: of \: given \: equation

Answered by Anonymous
25

\Large{\underline{\underline{\mathfrak{\bf{Question}}}}}

Solve \sf{\:\sqrt{(y+1)}\:+\:\sqrt{(2y-5)}\:=\:3}

\Large{\underline{\underline{\mathfrak{\bf{Solution}}}}}

\sf{\pink{\:\sqrt{(2y-5)}\:+\:\sqrt{(y+1)}\:=\:3}}

\mapsto\sf{\:\sqrt{(2y-5)}\:=\:3\:-\:\sqrt{(y+1)}}

Squaring both side

\mapsto\sf{\:(\sqrt{2y-5})^2\:=\:\left(3\:-\:\sqrt{(y+1)}\right)^2} \\ \\ \mapsto\sf{\:(2y-5)\:=\:(3)^2\:+\:(\sqrt{y+1})^2\:-\:2\times\:3\times (\sqrt{y+1})}

\mapsto\sf{\:(2y-5)\:=\:9\:+\:(y+1)\:-\:6\:\sqrt{(y+1)}} \\ \\ \mapsto\sf{\:(-y-10+2y-5)\:=\:-6\:\sqrt{(y+1)}} \\ \\ \mapsto\sf{\:(y-15)\:=\:-6\:\sqrt{(y+1)}}

Again, squaring both side

\mapsto\sf{\:(y-15)^2\:=\:(-6\:\sqrt{y+1})^2} \\ \\ \mapsto\sf{\:(y^2+225-30y)\:=\:36(y+1)} \\ \\ \mapsto\sf{\:(y^2-30y-36y+225-36)\:=\:0} \\ \\ \mapsto\sf{\:(y^2-66y+189)\:=\:0} \\ \\ \mapsto\sf{\:(y^2-63y-3y+189)\:=\:0} \\ \\ \mapsto\sf{\:y(y-63)-3(y-63)\:=\:0} \\ \\ \mapsto\sf{\:(y-63)(y-3)\:=\:0} \\ \\ \mapsto\sf{\:(y-63)\:=\:0\:\:or\:\:(y-3)\:=\:0} \\ \\ \mapsto\sf{\:y\:=\:63\:\:\:or\:\:y\:=\:3}

Now, we check our solution are right or wrong ,

So, if solution is right then, all values of y satisfies above equation

If, equation is not satisfies these solution , so we can say, that our solution is wrong .

First:-

  • when , y = 3

keep value of y in given equation,

\mapsto\sf{\:(\sqrt{3+1})\:+\:(\sqrt{2\times 3 -5})\:=\:3} \\ \\ \mapsto\sf{\:(\sqrt{4})\:+\:(\sqrt{6 -5})\:=\:3} \\ \\ \mapsto\sf{\:(2)\:+\:(\sqrt{1}\:=\:3} \\ \\ \mapsto\sf{\:2+1\:=\:3} \\ \\ \mapsto\sf{\:3\:=\:3} \\ \\ \mathfrak{\bf{\:\:\:\:\:L.H.S.\:=\:R.H.S.}}

Second:-

  • when, y = 63

keep value of y in given equation,

\mapsto\sf{\:(\sqrt{63+1})\:+\:(\sqrt{2\times 63 -5})\:=\:3} \\ \\ \mapsto\sf{\:(\sqrt{64})\:+\:(\sqrt{126 -5})\:=\:3} \\ \\ \mapsto\sf{\:(8)\:+\:(\sqrt{121})\:=\:3} \\ \\ \mapsto\sf{\:(8)+(11)\:=\:3} \\ \\ \mapsto\sf{\:19\:=\:3} \\ \\ \mathfrak{\bf{\:\:\:\:L.H.S.\:\neq\:R.H.S.}}

Y = 63 is not satisfied given equation,

So, we can say that y = 63 is not solution of given equation,

\Large{\underline{\underline{\mathfrak{\bf{Thus}}}}}

  • Required value of y = 3.
Similar questions