Math, asked by advaitdintakurti2410, 10 months ago

Please answer.....
I'll mark as brainliest

Attachments:

Answers

Answered by madhutiwari793
1

Answer:

1/1024

Step-by-step explanation:

please mark BRAINIEST

Attachments:
Answered by BendingReality
12

Answer:

\displaystyle \sf \longrightarrow t_{11}=\frac{1}{1024} \\

Step-by-step explanation:

Given :

\displaystyle \sf T_6 = -\frac{1}{32} \\ \\

\displaystyle \sf \longrightarrow T_6 = -2^{-5} \\ \\

We know :

\displaystyle \sf \longrightarrow T_n = a \ r^{n-1} \\ \\

\displaystyle \sf \longrightarrow -2^{-5} = a \ r^{6-1} \\ \\

\displaystyle \sf \longrightarrow -2^{-5} = a \ r^{5} \ ...(i) \\ \\

We also have given :

\displaystyle \sf T_9 = \frac{1}{256} \\ \\

\displaystyle \sf \longrightarrow T_9 = 2^{-8} \\ \\

\displaystyle \sf \longrightarrow 2^{-8} = a \ r^{9-1} \\ \\

\displaystyle \sf \longrightarrow 2^{-8} = a \ r^{8} \ ...(ii) \\ \\

Dividing ( ii ) by ( i ) we get :

\displaystyle \sf  \frac{2^{-8}}{-2^{-5}} =\frac{a \ r^{8}}{a \ r^{5}} \\ \\

\displaystyle \sf \longrightarrow r^3=-2^{-3} \\ \\

\displaystyle \sf \longrightarrow r=-2^{-1} \\ \\

Putting value of r in ( i ) we get :

\displaystyle \sf \longrightarrow -2^{-5} = (a). \ -r^{5} \ ...(i) \\ \\

\displaystyle \sf \longrightarrow -2^{-5} = a \ 2^{5} \ ...(i) \\ \\

\displaystyle \sf \longrightarrow a=  1 \\ \\

Now finding 11th term :

\displaystyle \sf \longrightarrow t_{11}=1\left(\frac{1}{2}\right)^{11-1} \\ \\

\displaystyle \sf \longrightarrow t_{11}=\left(\frac{1}{2}\right)^{10} \\ \\

\displaystyle \sf \longrightarrow t_{11}=\frac{1}{1024} \\ \\

Hence we get required answer.

Similar questions