Math, asked by vishakn0017, 10 months ago

Please answer. I will mark as brainliest if I'm satisfied. ​

Attachments:

Answers

Answered by janvibhola1202004
2

Answer:

K=2

Step-by-step explanation:

Hope it helps uh!

Attachments:
Answered by amitkumar44481
3

Solution :

We have, Equation

 \tt\dagger \:  \:  \:  \:  \:   {x}^{2}  + kx -  \dfrac{5}{4}  = 0.

Let's One Root be,

 \tt \dagger \:  \:  \:  \alpha  =  \dfrac{1}{2}

What is meaning of given sentence ?

  • When, Putting the given roots as place of x then our Equation become 0.

\rule{90}1

Taking Equation,

 \tt\longmapsto  {x}^{2}  + kx -  \dfrac{4}{5}  = 0.

\tt\longmapsto  \dfrac{4 {x}^{2}  + 4kx - 5}{4}  = 0.

\tt\longmapsto 4 {x}^{2}  + 4kx - 5 = 0.

Now, Putting the value of Alpha.

\tt\longmapsto 4 {( \dfrac{1}{2} )}^{2}  + 4k( \dfrac{1}{2} ) - 5 = 0.

\tt\longmapsto 4 \times  \dfrac{1}{4}  + 4k \times  \dfrac{1}{2}  - 5 = 0.

\tt \longmapsto 1 + 2k = 5.

\tt\longmapsto 2k = 4.

\tt \longmapsto k = 2.

Therefore, the value of k be 2.

\rule{200}3

Let Find Both Roots Of given Quadratic equation,

\tt \longmapsto 4 {x}^{2}  + 8x - 5 = 0.

Compare with General Equation,

 \tt \dagger \:  \:  \:  a {x}^{2}  + bx + c = 0.

Where,

 \tt \red{ a \neq0}.

\tt \longmapsto 4 {x}^{2}  + 8x - 5 = 0.

\tt\longmapsto 4 {x}^{2}   + 10x - 2x - 5 = 0.

\tt\longmapsto 4 {x}^{2}   - 2x + 10x - 5 = 0.

\tt\longmapsto 2x(2x - 1) + 5(2x - 1) =0 .

\tt\longmapsto (2x + 5)(2x - 1) = 0.

\rule{90}1

Either,

\tt\mapsto 2x + 5 = 0.

\tt\mapsto x  = \dfrac{-5}{2}.

\rule{90}1

Or,

\tt\mapsto 2x - 1 = 0.

\tt\mapsto x  = \dfrac{1}{2}

\rule{90}1

Both Roots Of given Equation be,

\tt \dagger \: \: \: \alpha =  \dfrac{1}{2} \: \: \beta =  \dfrac{-5}{2}

Similar questions