Math, asked by RidhoChauhan1923, 11 months ago

please answer it......​

Attachments:

Answers

Answered by shadowsabers03
2

Q1. Since the triangle is right angled at B, AB and BC are perpendicular sides and AC is the hypotenuse. So,

\longrightarrow\sf{AC=\sqrt{AB^2+BC^2}}

\longrightarrow\sf{AC=\sqrt{12^2+5^2}}

\longrightarrow\sf{AC=\sqrt{144+25}}

\longrightarrow\sf{AC=\sqrt{169}}

\longrightarrow\sf{AC=13\ cm}

Then,

\sf{(i)\quad\!\!\sin A=\dfrac{BC}{AC}}

\longrightarrow\sf{\underline{\underline{\sin A=\dfrac{5}{13}}}}

And,

\longrightarrow\sf{\tan A=\dfrac{BC}{AB}}

\longrightarrow\sf{\underline{\underline{\tan A=\dfrac{5}{12}}}}

\sf{(ii)\quad\!\!\!\sin C=\dfrac{AB}{AC}}

\longrightarrow\sf{\underline{\underline{\sin C=\dfrac{12}{13}}}}

And,

\longrightarrow\sf{\cot C=\dfrac{BC}{AB}}

\longrightarrow\sf{\underline{\underline{\cot C=\dfrac{5}{12}}}}

Q2. Given,

\displaystyle\longrightarrow\sf{\cot\theta=\dfrac{20}{21}}

First we assume \theta is an acute angle. Then \theta can be the angle of a right triangle of perpendicular sides \sf{20\ cm} which is adjacent to \theta, and \sf{21\ cm} which is opposite to \theta.

Hence the length of the hypotenuse of the triangle is,

\displaystyle\longrightarrow\sf{\sqrt{20^2+21^2}\ cm}

\displaystyle\longrightarrow\sf{\sqrt{400+441}\ cm}

\displaystyle\longrightarrow\sf{\sqrt{841}\ cm}

\displaystyle\longrightarrow\sf{29\ cm}

So we have,

  • \sf{Opposite\ Side\ of\ \theta=21\ cm}
  • \sf{Adjacent\ Side\ of\ \theta=20\ cm}
  • \sf{Hypotenuse=29\ cm}

Then,

\longrightarrow\sf{\underline{\underline{\sin\theta=\pm\dfrac{21}{29}}}}

\longrightarrow\sf{\underline{\underline{\cos\theta=\pm\dfrac{20}{29}}}}

\longrightarrow\sf{\underline{\underline{\tan\theta=\dfrac{21}{20}}}}

\longrightarrow\underline{\underline{\mathrm{cosec\,\theta}=\pm\sf{\dfrac{29}{21}}}}

\longrightarrow\sf{\underline{\underline{\sec\theta=\pm\dfrac{29}{20}}}}

Negative sign is only when \theta belongs to third quadrant.

Q3. Given,

\longrightarrow\sf{\cos A=\dfrac{12}{13}}

A is assumed to be an acute angle.

Then,

\longrightarrow\sf{\sin^2A=1-\cos^2A}

\longrightarrow\sf{\sin^2A=1-\left(\dfrac{12}{13}\right)^2}

\longrightarrow\sf{\sin^2A=1-\dfrac{144}{169}}

\longrightarrow\sf{\sin^2A=\dfrac{169-144}{169}}

\longrightarrow\sf{\sin^2A=\dfrac{25}{169}}

\longrightarrow\sf{\sin A=\dfrac{5}{13}}

And,

\longrightarrow\sf{\tan A=\dfrac{\sin A}{\cos A}}

\longrightarrow\sf{\tan A=\dfrac{\left(\dfrac{5}{13}\right)}{\left(\dfrac{12}{13}\right)}}

\longrightarrow\sf{\tan A=\dfrac{5}{12}}

Hence,

\longrightarrow\sf{\sin A(1-\tan A)=\dfrac{5}{13}\left(1-\dfrac{5}{12}\right)}

\longrightarrow\sf{\sin A(1-\tan A)=\dfrac{5}{13}\times\dfrac{12-5}{12}}

\longrightarrow\sf{\sin A(1-\tan A)=\dfrac{5}{13}\times\dfrac{7}{12}}

\longrightarrow\sf{\sin A(1-\tan A)=\dfrac{35}{156}}

Thus Verified!

Similar questions