Math, asked by ishika7968, 1 year ago

Please answer it...

Attachments:

Answers

Answered by Anonymous
18

ANSWER

\large\underline\bold{GIVEN,}

\sf\dashrightarrow g(x)=x+1

\sf\dashrightarrow p(x)=2x^3+ax^2+2bx+1\:and\: 2a-3b=4

\large\underline\bold{TO\:FIND,}

\sf\large\dashrightarrow  the\:value\:of\:'a'\:and'b'.

NOTE:–

\sf {\boxed{\bf{\:\: to\:find\:zeroes\:of\:the\:polynomial\:we\:need\:p(x)=0}}}

\large\underline\bold{SOLUTION,}

TAKING g(x)=x+1

\sf\implies x+1=0

\sf\implies x=-1

PUTTING THE VALUE OF X IN P(x),

we get,

\sf\therefore 2x^3+ax^2+2bx+1=0

\sf\implies 2(-1)^3+a(-1)^2+2b(-1)+1=0

\sf\implies (-2)+a-2b+1=0

\sf\implies a-2b-1=0

\sf\implies a-2b=1

\sf\implies a=1+2b\:---equation^1

NOW,

taking ,

\sf\dashrightarrow 2a-3b=4\:----[taking\:as\:equation\:2_{nd}]

PUTTING THE VALUES OF EQUATION 1 IN EQUATION 2,

WE GET,

\sf\therefore a=1+2b

\sf\implies 2a-3b=4

\sf\implies 2(1+2b)-3b=4

\sf\implies 2+4b-3b=4

\sf\implies 2+b=4

\sf\implies b=2

\large{\boxed{\bf{\star\:\: b=2\:\: \star }}}

PUTTING THE VALUE OF 'b' in equation 1

WE GET,

\sf\therefore a=1+2b

\sf\therefore b=2

\sf\implies a=1+2 \times (2)

\sf\implies a=1+4

\sf\implies a=5

\large{\boxed{\bf{\star\:\: a=5\:\: \star }}}

VERIFICATION,

\sf\therefore a=5

\sf\therefore b=2

\sf\therefore x=-1

\sf\therefore 2x^3+ax^2+2bx+1=0

\sf\implies 2(-1)^3+(5)(-1)^2+(2)(-1)+1=0

\sf\implies (-2)+5+(-4)+1=0

\sf\implies (-1)+1=0

\sf\implies 0=0

\sf\therefore L.H.S=R.H.S

\sf\therefore 2a-3b=4

\sf\implies 2(5)-3(2)=4

\sf\implies 10-6=4

\sf\implies 4=4

\sf\therefore L.H.S=R.H.S

\large\underline\bold{HENCE, VERIFYED.}

\large\underline\bold{\therefore \:THE\:VALUE\:OF\:'a' \:IS\:5 \:AND\:VALUE\:OF\:'b'\:IS\:2.}

________________________

Answered by Anonymous
24

Timing of Physics wallah classes

(I) => inorganic chemistry

(O)=>organic chemistry

Attachments:
Similar questions