Math, asked by Anonymous, 8 months ago

please answer it asap​

Attachments:

Answers

Answered by Anonymous
50

Question :

Evaluate :

\sf\int\dfrac{x^3+x+1}{x^2-1}dx

Solution :

We have , to integrate :

\sf\int\dfrac{x^3+x+1}{x^2-1}dx

\sf\dfrac{x^3+x+1}{x^2-1}dx

By long division

\begin{array}{c | c c c c c c c} \cline{2-8}&x+&&&&&& \\ \cline{1-8} (x^2 +1) & x^3&+x&+1&&&&\\ & x^3& -x \\ &(-)&(+) \\ \cline{2-8} &&2x&+1\\ \\ \cline{2-8} \end{array}

Dividend = Divisor × Quotient + Remainder

\sf\:x^3+x+1=x^2-1\:\times\:x+(2x+1)

Divide both sides by \sf\:x^2-1

\sf\:\dfrac{x^3+x+1}{x^2-1}=x+\dfrac{2x+1}{x^2-1}

Thus ,

\sf\int\dfrac{x^3+x+1}{x^2-1}dx

\sf\int\:(x+\dfrac{2x+1}{x^2-1})dx

\sf\int\:x\:dx+\int\dfrac{2x+1}{x^2-1}dx

\sf\int\:x\:dx+\int\dfrac{x+1+x}{x^2-1}dx

\sf\int\:x\:dx+\int\dfrac{x+1}{x^2-1}dx+\dfrac{x}{x^2-1}dx

\sf\:\green{Now\:Solving}

\sf\int\dfrac{x+1}{x^2-1}dx

\sf\int\dfrac{x+1}{(x+1)(x-1)}dx

\sf\int\dfrac{1}{x-1}dx

\sf=\log(x-1)

\sf\blue{Now\:Solving}

\sf\int\dfrac{x}{x^2-1}dx

\sf\dfrac{1}{2}\int\dfrac{2x}{x^2-1}dx

Let t=x²-1

thus, dt/dx=2x

\sf\dfrac{1}{2}\int\dfrac{2x}{t}\times\dfrac{dt}{2x}

\sf\dfrac{1}{2}\int\dfrac{1}{t}dt

\sf=\dfrac{\log\:t}{2}

\sf=\dfrac{\log(x^2-1)}{2}

\sf=\dfrac{\log(x+1)}{2}+\dfrac{\log(x-1)}{2}

Hence,

\sf\int\:x\:dx+\int\dfrac{x+1}{x^2-1}dx+\dfrac{x}{x^2-1}dx

\sf=\dfrac{x^2}{2}+\log(x-1)+\dfrac{\log(x+1)}{2}+\dfrac{\log(x-1)}{2}+c

\sf=\dfrac{x^2+3\log(x-1)+\log(x+1)}{2}+c

Therefore,

\tt\dfrac{x^3+x+1}{x^2-1}dx

\sf=\dfrac{x^2+3\log(x-1)+\log(x+1)}{2}+c

Answered by CopyThat
4

The answer after evaluating will be :

x²+3log(x-1)+log(x+1)+c÷2

Go through the attachment for the answer.

Attachments:
Similar questions