Math, asked by prachi971714, 1 month ago

please answer it asap
don't spam ​

Attachments:

Answers

Answered by mathdude500
13

\large\underline{\sf{Solution-}}

Give relation is

\rm :\longmapsto\:R =  \{(a,b) : a \leqslant b \} \:  \forall \: a, \: b \:  \in \: R

Reflexive

We observe that

\rm :\longmapsto\:0.1 \cancel \leqslant  \: 0.01

\rm :\implies\:0.1 \:  \cancel \leqslant  \:  {(0.1)}^{2}

\rm :\implies\:(0.1, \: 0.1) \:  \cancel \in \: R

\bf\implies \:R \: is \: not \: reflexive

Symmetric

We observe that

\rm :\longmapsto\:  - 1 < 4

\rm :\longmapsto\:  - 1 <  {2}^{2}

\rm :\implies\:( - 1,2) \:  \in \: R

But

\rm :\longmapsto\:2 \:  \cancel <  {( - 1)}^{2}

\rm :\implies\:(2, - 1) \: \cancel \in \: R

\bf\implies \:R \: is \: not \: symmetric

Transitive

We observe that

\rm :\longmapsto\:3 < 16

\rm :\longmapsto\:3 <  {( - 4)}^{2}

\rm :\implies\:(3, - 4) \:  \in \: R

Also,

\rm :\longmapsto\: - 4 < 1

\rm :\longmapsto\: - 4 <  {(1)}^{2}

\rm :\implies\:( - 4, 1) \:  \in \: R

Also,

\rm :\longmapsto\:3 \: \cancel \leqslant  \: 1

\rm :\longmapsto\:3 \: \cancel \leqslant  \:  {(1)}^{2}

\rm :\implies\:(  3, 1) \:  \cancel\in \: R

Now, we have

\rm :\implies\:(3, - 4) \:  \in \: R

\rm :\implies\:( - 4, 1) \:  \in \: R

but

\rm :\implies\:(  3, 1) \:  \cancel\in \: R

\bf\implies \:R \: is \: not \: transitive

Basic Concept Used :-

Let R be a relation defined on set A then

1. Relation R is Reflexive if (a, a) ∈ R for all a ∈ A.

2. Relation R is symmetric if (a, b) ∈ R then (b, a) ∈ R for all a, b ∈ A.

3. Relation R is transitive if (a, b) ∈ R, (b, c) ∈ R then (a, c) ∈ R for all a, b, c ∈ A

Similar questions