Math, asked by andreagaughan28, 6 months ago

please answer it
Factorize 8a³ + 27​

Answers

Answered by yuvrajgirishs
2

Answer:

hope it helpz .... ...... ......

Attachments:
Answered by mathdude500
0

\large\underline\purple{\bold{Solution :-  }}

 \bf \: Factorize :  \:  8 {a}^{3}  + 27

 :  \implies  \sf \:    {(2a)}^{3}  +  {(3)}^{3}

 :  \implies  \sf \: (2a + 3) \bigg( {(2a)}^{2}  - (2a)(3) +  {(3)}^{2}  \bigg)

 \boxed{ \pink{  \because \: \bf \:  {x}^{3}  +  {y}^{3}  = (x + y)( {x}^{2}  - xy +  {y}^{2} )}}

 :  \implies  \bf \: (2a + 3)( {4a}^{2}  - 6a + 9)

For More Information

 \red{ \tt \:(a + b)^{2} = {a}^{2} + {b}^{2} + 2ab }

 \red{ \tt \:(a - b)^{2} = {a}^{2} + {b}^{2} - 2ab }

 \red{ \tt \:(a + b)(a - b) = {a}^{2} - {b}^{2} }

 \red{ \tt \: (a + b + c)^{2} = {a}^{2} + {b}^{2} + {c}^{2}  + 2ab + 2bc + 2ca}

 \blue{ \tt \: (a + b) ^{3} = {a}^{3} + b^{3} + 3ab(a + b)}

 \blue{ \tt \: (a  -  b) ^{3} = {a}^{3}  -  b^{3}  -  3ab(a  -  b)}

 \pink{ \tt \: a ^{3} + {b}^{3} = (a + b)(a ^{2} + {b}^{2} - ab)}

 \pink{ \tt \: a ^{3} - {b}^{3} = (a - b)(a ^{2} + {b}^{2} + ab)}

Similar questions