Math, asked by brini95, 9 months ago

Please answer it fast !!!!

Attachments:

Answers

Answered by atikshghuge
0

Answer:

We have, cosec A = 2

Now, sin A = 

⇒ sin A = 

We know that sin² A + cos² A = 1

⇒ cos² A = 1 - sin² A

⇒ cos A = √(1-sin² A)

⇒ cos A = √{1- }

⇒ cos A = √(1 - )

⇒ cos A = √()

⇒ cos A = 

We know that tan A = 

⇒ tan A = 

⇒ tan A = 

We need to find  + 

Substituting the values of each trigonometric function obtained earlier, we get:

+  =  + 

=  + 

=  + 

=  × 

=  = 8-6= 2

Step-by-step explanation:

Answered by ThinkingBoy
0

Answer:

Step-by-step explanation:

CosecA = \frac{1}{SinA} = 2

\small\black\boxed{SinA = \frac{1}{2}}

Sin^2A = \frac{1}{4}

1-Cos^2A = \frac{1}{4}

Cos^2A = \frac{3}{4}

\small\black\boxed{CosA= \frac{\sqrt{3} }{2}}

TanA = \frac{SinA}{CosA}

\small\black\boxed{TanA = \frac{1}{\sqrt{3} } }

We need to find

\frac{1}{tanA} + \frac{sinA}{1+cosA}

= \frac{1}{1/\sqrt{3} } + \frac{1/2}{\sqrt{3}/2+1 }

= \sqrt{3}+\frac{1}{2}*\frac{2}{\sqrt{3}+2 }

= \sqrt{3}+\frac{1}{\sqrt{3}+2 }

= \frac{2(\sqrt{3}+2) }{(\sqrt{3}+2)}

= 2

Similar questions