Math, asked by kumarprateek166, 7 months ago

please answer it fast​

Attachments:

Answers

Answered by lokeshwariwaikhom
2

Answer:

35,60,130

Step-by-step explanation:

please follow me

Answered by Tomboyish44
22

Given:

ΔAED is an isosceles triangle.

∠ACF = 130°

∠AED = 60°

∠ABC = 35°

To Find:

∠x, ∠y, ∠z, ∠P.

Solution:

In ΔAED,

AE = AD [Given]

⇒ ∠AED = ∠ADE

[Angles opposite to equal sides are equal to one another]

We know that ∠AED = 60°.

⇒ ∠ADE = 60°

∠P = 60°

In ΔAED

⇒ ∠A + ∠E + ∠D = 180° [ASP of a triangle]

⇒ ∠y + 60° + 60° = 180°

⇒ ∠y + 120° = 180°

⇒ ∠y = 180° - 120°

∠y = 60°

In line BF;

⇒ ∠ACD + ∠ACF = 180° [Linear Pair]

⇒ ∠ACD + 130° = 180°

⇒ ∠ACD = 180° - 130°

⇒ ∠ACD = 50°

In line BF;

⇒ ∠ADB + ∠ADC = 180° [Linear Pair]

⇒ 60° + ∠ADC = 180°

⇒ ∠ADC = 180° - 60°

⇒ ∠ADC = 120°

In ΔADC;

⇒ ∠CAD + ∠ADC + ∠ACD = 180° [ASP of a triangle]

⇒ ∠x + 120° + 50° = 180°

⇒ ∠x + 170° = 180°

⇒ ∠x = 180° - 170°

⇒ ∠x = 10°

In ΔABC:

⇒ ∠A + ∠B + ∠C = 180° [ASP of a triangle]

⇒ [x + y + z]° + 35° + 50° = 180°

⇒ [10 + 60 + z]° + 85° = 180°

⇒ [70 + z]° = 180° - 85°

⇒ [70 + z]° = 95°

⇒ [70 + z]° = 95°

⇒ ∠z = 95° - 70°

⇒ ∠z = 25 °

Final answers:

⇒ ∠x = 10°

⇒ ∠y = 60°

⇒ ∠z = 25 °

⇒ ∠P = 60°

Attachments:
Similar questions