Math, asked by Mounikamaddula, 6 months ago

please answer it fast I will mark u as brainliest.... irrelevant answers will be reported....​

Attachments:

Answers

Answered by shadowsabers03
12

We're given the equation,

\displaystyle\longrightarrow\left|\begin{array}{ccc}\sf{a}&\sf{a+1}&\sf{a-1}\\\sf{-b}&\sf{b+1}&\sf{b-1}\\\sf{c}&\sf{c-1}&\sf{c+1}\end{array}\right|+\left|\begin{array}{ccc}\sf{a+1}&\sf{b+1}&\sf{c-1}\\\sf{a-1}&\sf{b-1}&\sf{c+1}\\\sf{(-1)^{n+2}a}&\sf{(-1)^{n+1}b}&\sf{(-1)^nc}\end{array}\right|\sf{=0}

Consider the second determinant in the LHS.

\longrightarrow\left|\begin{array}{ccc}\sf{a+1}&\sf{b+1}&\sf{c-1}\\\sf{a-1}&\sf{b-1}&\sf{c+1}\\\sf{(-1)^{n+2}a}&\sf{(-1)^{n+1}b}&\sf{(-1)^nc}\end{array}\right|

We can take its transpose,

\longrightarrow\left|\begin{array}{ccc}\sf{a+1}&\sf{b+1}&\sf{c-1}\\\sf{a-1}&\sf{b-1}&\sf{c+1}\\\sf{(-1)^{n+2}a}&\sf{(-1)^{n+1}b}&\sf{(-1)^nc}\end{array}\right|=\left|\begin{array}{ccc}\sf{a+1}&\sf{a-1}&\sf{(-1)^{n+2}a}\\\sf{b+1}&\sf{b-1}&\sf{(-1)^{n+1}b}\\\sf{c-1}&\sf{c+1}&\sf{(-1)^nc}\end{array}\right|

and can perform the operations \sf{C_1\leftrightarrow C_2,}

\longrightarrow\left|\begin{array}{ccc}\sf{a+1}&\sf{b+1}&\sf{c-1}\\\sf{a-1}&\sf{b-1}&\sf{c+1}\\\sf{(-1)^{n+2}a}&\sf{(-1)^{n+1}b}&\sf{(-1)^nc}\end{array}\right|=\left|\begin{array}{ccc}\sf{a-1}&\sf{a+1}&\sf{(-1)^{n+2}a}\\\sf{b-1}&\sf{b+1}&\sf{(-1)^{n+1}b}\\\sf{c+1}&\sf{c-1}&\sf{(-1)^nc}\end{array}\right|

and then \sf{C_1\leftrightarrow C_3.}

\longrightarrow\left|\begin{array}{ccc}\sf{a+1}&\sf{b+1}&\sf{c-1}\\\sf{a-1}&\sf{b-1}&\sf{c+1}\\\sf{(-1)^{n+2}a}&\sf{(-1)^{n+1}b}&\sf{(-1)^nc}\end{array}\right|=\left|\begin{array}{ccc}\sf{(-1)^{n+2}a}&\sf{a+1}&\sf{a-1}\\\sf{(-1)^{n+1}b}&\sf{b+1}&\sf{b-1}\\\sf{(-1)^nc}&\sf{c-1}&\sf{c+1}\end{array}\right|

So our equation becomes,

\displaystyle\longrightarrow\left|\begin{array}{ccc}\sf{a}&\sf{a+1}&\sf{a-1}\\\sf{-b}&\sf{b+1}&\sf{b-1}\\\sf{c}&\sf{c-1}&\sf{c+1}\end{array}\right|+\left|\begin{array}{ccc}\sf{(-1)^{n+2}a}&\sf{a+1}&\sf{a-1}\\\sf{(-1)^{n+1}b}&\sf{b+1}&\sf{b-1}\\\sf{(-1)^nc}&\sf{c-1}&\sf{c+1}\end{array}\right|\sf{=0}

Since \sf{C_2} and \sf{C_3} each are identical, we can combine both the determinants by adding \sf{C_1} each as,

\displaystyle\longrightarrow\left|\begin{array}{ccc}\sf{a+(-1)^{n+2}a}&\sf{a+1}&\sf{a-1}\\\sf{-b+(-1)^{n+1}b}&\sf{b+1}&\sf{b-1}\\\sf{c+(-1)^nc}&\sf{c-1}&\sf{c+1}\end{array}\right|\sf{=0}

If \sf{n} is an odd integer,

  • \sf{(-1)^{n+2}a=-a}

  • \sf{(-1)^{n+1}b=b}

  • \sf{(-1)^nc=-c}

So,

\displaystyle\longrightarrow\left|\begin{array}{ccc}\sf{a-a}&\sf{a+1}&\sf{a-1}\\\sf{-b+b}&\sf{b+1}&\sf{b-1}\\\sf{c-c}&\sf{c-1}&\sf{c+1}\end{array}\right|\sf{=0}

\displaystyle\longrightarrow\left|\begin{array}{ccc}\sf{0}&\sf{a+1}&\sf{a-1}\\\sf{0}&\sf{b+1}&\sf{b-1}\\\sf{0}&\sf{c-1}&\sf{c+1}\end{array}\right|\sf{=0}

Therefore, \sf{n} should be an odd integer. So (B) is the answer.


Anonymous: Excellent bro !
amitkumar44481: Awesome bhai ❤️
Similar questions