Math, asked by kbheemashankar23, 1 month ago

please answer it fastly​

Attachments:

Answers

Answered by AryanDubey124
1

Step-by-step explanation:

Diagonal = 13

then the length breadth will be

H²= l²+b²

13²= l²+b²

169= 144+ 25

length = 12

and breadth= 5

pls mark me as brain list...

Answered by Anonymous
12

Given that , The Perimeter of a rectangular room is 34 m and the Length of Diagonal is 13 m .

❍ Let's say that Length and Breadth of Rectangular room be l & b , respectively .

⠀⠀⠀⠀⠀⠀CASE I : The Perimeter of a rectangular room is 34 m .

As , We know that ,

\qquad \star \:\underline {\boxed{  \pink {\bf{   Perimeter _{(Rectangle )} =\: 2\times \bigg( Length \:+\:Breadth\bigg)}}}}\\\\

\qquad \dashrightarrow \sf Perimeter_{( Rectangular \:room)}\:=\:  2\times \big( Length \:+\:Breadth\big) \\\\

\qquad \dashrightarrow \sf 34\:=\:  2\times ( l \:+\:b) \\\\

\qquad \dashrightarrow \sf \dfrac{34}{2}\:=\:  ( l \:+\:b) \\\\

\qquad \dashrightarrow \sf \cancel {\dfrac{34}{2}}\:=\:  ( l \:+\:b) \\\\

\qquad \dashrightarrow \sf 17\:=\:   l \:+\:b \\\\

\qquad \dashrightarrow \sf l \:=\:\:17 - b  \\\\

\qquad \dashrightarrow \sf l \:=\:\:17 - b \qquad \bigg\lgroup \sf{ \:Equation \:1 \:}\bigg\rgroup  \\\\

⠀⠀⠀⠀⠀⠀CASE II : The Diagonal of a rectangular room is 13 m .

As , We know that ,

  • By Pythagoras Theorem :

\qquad\star\: \underline {\boxed{  \pink {\frak { \:(Diagonal)^2 \:\:= \: ( \:Length \:)^2 \:+\:(Breadth)^2 }}}}\\\\

\qquad \dashrightarrow \sf \:(Diagonal)^2 \:\:= \: ( \:Length \:)^2 \:+\:(Breadth)^2  \\\\

\qquad \dashrightarrow \sf \:(13)^2 \:\:= \: ( \:l \:)^2 \:+\:(b)^2  \\\\

\qquad \dashrightarrow \sf \:(13)^2 - (b)^2 \:\:= \: ( \:l \:)^2   \\\\

\qquad \dashrightarrow \sf \sqrt{\:(13)^2 - (b)^2 \:}\:= \: \:l \:   \\\\

  • Now by Squaring both sides :

\qquad \dashrightarrow \sf \sqrt{\:(13)^2 - (b)^2 \:}\:= \: \:l \:   \\\\

\qquad \dashrightarrow \sf \:(13)^2 - (b)^2 \:\:= \: (\:l )^2\:   \\\\

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: Equation \: 1 \:[\: as \:,\: value \:of \:l \;]\::}}\\

\qquad \dashrightarrow \sf \:(13)^2 - (b)^2 \:\:= \: (\:l )^2\:   \\\\

\qquad \dashrightarrow \sf l \:=\:\:17 - b \qquad \bigg\lgroup \sf{ \:Equation \:1 \:}\bigg\rgroup  \\\\

\qquad \dashrightarrow \sf \:(13)^2 - (b)^2 \:\:= \: (\:l )^2\:   \\\\

\qquad \dashrightarrow \sf \:(13)^2 - (b)^2 \:\:= \: (\:17 - b  )^2\:   \\\\

\qquad \dashrightarrow \sf \:(13)^2 - (b)^2 \:\:= \: 17^2 + b^2 - 2 (17)(b)\:   \\\\

\qquad \dashrightarrow \sf \:(13)^2 - (b)^2 \:\:= \: 17^2 + b^2 - 34b\:   \\\\

\qquad \dashrightarrow \sf \:(13)^2 - (b)^2 \:\:= \: 17^2 + b^2 - 34b\:   \\\\

\qquad \dashrightarrow \sf \:169 - (b)^2 \:\:= \: 289 + b^2 - 34b\:   \\\\

\qquad \dashrightarrow \sf \:169 - (b)^2 \:\:= \: 289 + b^2 - 34b\:   \\\\

\qquad \dashrightarrow \sf \:169  \:\:= \: 289 + b^2 + b^2 - 34b\:   \\\\

\qquad \dashrightarrow \sf \:0  \:\:= \: 289 - 169 + 2b^2 - 34b\:   \\\\

\qquad \dashrightarrow \sf \:0  \:\:= \: 120 + 2b^2 - 34b\:   \\\\

\qquad \dashrightarrow \sf \: \:  2b^2 - 34b\: + 120 \:= 0   \\\\

\qquad \dashrightarrow \sf \: \:  b^2 - 17b\: + 60 \:= 0   \\\\

\qquad \dashrightarrow \sf \: \:  b^2 - 12b\: - 5b + 60 \:= 0   \\\\

\qquad \dashrightarrow \sf \: \:  b( b - 12)\: - 5( b - 12 )  \:= 0   \\\\

\qquad \dashrightarrow \sf \: \:  ( b - 5)\: ( b - 12 )  \:= 0   \\\\

\qquad \therefore \: \underline {\boxed {\pmb{\frak{\purple { b \: \:(\:or \:Breadth \:)\:=\: 12 \:\:or \: 5 \: }}}}}\\\\

⠀⠀⠀⠀⠀⠀If b is equal to 12 , then l will be :

\qquad \dashrightarrow \sf l \:=\:\:17 - b \qquad \bigg\lgroup \sf{ \:Equation \:1 \:}\bigg\rgroup  \\\\

\qquad \dashrightarrow \sf l \:=\:\:17 - b  \\\\

\qquad \dashrightarrow \sf l \:=\:\:17 - 12  \\\\

\qquad \dashrightarrow \sf l \:=\:\:5  \\\\

\qquad \therefore \: \underline {\boxed {\pmb{\frak{\purple { l \:\:(\:or \:Length \:)\:\:=\:  \: 5 \:m }}}}}\\\\

⠀⠀⠀⠀⠀⠀If b is equal to 5 , then l will be :

\qquad \dashrightarrow \sf l \:=\:\:17 - b  \\\\

\qquad \dashrightarrow \sf l \:=\:\:17 - 5  \\\\

\qquad \dashrightarrow \sf l \:=\:\:17 - 5  \\\\

\qquad \therefore \: \underline {\boxed {\pmb{\frak{\purple { l \:\:(\:or \:Length \:)\:\:=\:  \: 12 \:m }}}}}\\\\

⠀⠀⠀⠀⠀⠀Therefore , If Length is equal 12 m then Breadth is equal to 5 m Or, If Length is equal to 5 m then Breadth is equal to 12 m

⠀⠀⠀⠀⠀⠀AND ,

⠀⠀⠀⠀⠀⠀If Breadth is equal 12 m then Length is equal to 5 m Or, If Breadth is equal to 5 m then Length is equal to 12 m .

\qquad \therefore \underline {\sf Hence, \: The \: Dimensions \:of \:\:Rectangular \:room \: are \:\bf 5 \: m \:\& \:12 \:m \:\sf , respectively.}\\

Similar questions