Math, asked by akankshachourasia06, 21 days ago

Please answer it its important

Attachments:

Answers

Answered by mathdude500
14

\large\underline{\sf{Solution-}}

Given equation is

\rm :\longmapsto\:2\bigg(\dfrac{3x - 5}{x + 2}  \bigg)  - 5\bigg(\dfrac{x + 2}{3x - 5}  \bigg)  = 3

To solve this equation, Let assume that

\rm :\longmapsto\:\dfrac{3x - 5}{x + 2}  = y

So, given equation reduced to

\rm :\longmapsto\:2y - \dfrac{5}{y}  = 3

\rm :\longmapsto\:\dfrac{ {2y}^{2}  - 5}{y}  = 3

\rm :\longmapsto\: {2y}^{2} - 5 = 3y

\rm :\longmapsto\: {2y}^{2} - 3y - 5 =0

\rm :\longmapsto\: {2y}^{2} - 5y + 2y - 5 =0

\rm :\longmapsto\:y(2y - 5) + 1(2y - 5) = 0

\rm :\longmapsto\:(y + 1)(2y - 5) = 0

\rm :\longmapsto\:y + 1 = 0 \:  \:  \: or \:  \:  \:  \: 2y - 5= 0

\bf\implies \:y = -  1 \:  \:  \:  \: or \:  \:  \:  \: \dfrac{5}{2}

So,

\rm :\longmapsto\:y =  - 1

On substituting the value of y, we get

\rm :\longmapsto\:\dfrac{3x - 5}{x + 2}  =  - 1 \:  \:  \:

\rm :\longmapsto\:3x - 5 =  - x - 2

\rm :\longmapsto\:3x  +  x = 5  -  2

\rm :\longmapsto\:4x = 3

\bf\implies \:x = \dfrac{3}{4}

Also,

\rm :\longmapsto\:y = \dfrac{5}{2}

\rm :\longmapsto\:\dfrac{3x - 5}{x + 2}  = \dfrac{5}{2}

\rm :\longmapsto\:6x - 10 = 5x + 10

\rm :\longmapsto\:6x - 5x = 10 + 10

\bf\implies \:x = 20

Hence,

The solution of equation

\rm :\longmapsto\:2\bigg(\dfrac{3x - 5}{x + 2}  \bigg)  - 5\bigg(\dfrac{x + 2}{3x - 5}  \bigg)  = 3

is

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \purple{ \underbrace{\purple{ \boxed{ \bf{ \:  \: x = \dfrac{3}{4}  \:  \: }}} \:  \:  \:  \: and \:  \:  \:  \: \purple{ \boxed{ \bf{ \:  \: x = 20 \:  \: }}}}}

Similar questions