Math, asked by animainhpcp1xnfk, 1 year ago

Please answer it questio no 14

Attachments:

Answers

Answered by rizwan35
0

given \: polynomial\: is \\  \\ f(x) = x {}^{2}  - 6x + k \\  \\ therefore \: sum \: of \: the \: roots \: is \\  \\  \alpha  +  \beta  =  -  \frac{ - 6}{1}  = 6 \\  \\ and \: product \: of \: roots \: is \\  \\  \alpha  \beta  =  \frac{k}{1}  = k \\  \\ since \\  \\ ( \alpha  +  \beta ) {}^{2}  =  \alpha  {}^{2}  +  \beta  {}^{2}  +2 \alpha  \beta .........(2) \\  \\ putting \: the \: valuesof \: ( \alpha  +  \beta ) \: and \:  \alpha  \beta in \: equation \: (2) \\  \\ 6 {}^{2}  =  \alpha  {}^{2}  +  \beta  {}^{2}  + 2 k \\  \\ 36 =  \alpha  {}^{2}  +  \beta  {}^{2}  + 2k \\  \\ but \: given \: that \:  \alpha  {}^{2}  +  \beta  {}^{2}  = 40 \\  \\ therefore \\  \\ 36 = 40 + 2k \\  \\ 2k = 40 - 36 \\  \\ 2k =  - 4 \\  \\ k =  \frac{ - 4}{2}  \\  \\ k =  - 2 \\  \\ hope \: it \: helps...
Similar questions